
NASA Contractor Report-187554

|HIIHAL CONTAINS

EILOI iU.tm_TiStlS

Advanced Information Processing System for
Advanced Launch System:
Avionics Architecture Synthesis

Jaynarayan H. Lala
Richard E. Harper
Kenneth R. Jaskowiak
Gene Rosch

Linda S. Alger
Andrei L. Schor

THE CHARLES STARK DRAPER LABORATORY, INC.

CAMBRIDGE, MA 02139

Contract NAS1-18565

September 1991

Nattonal Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

TABLE OF CONTENTS

Title Page

List of Illustrations .. v

List of Tables .. vii

1.0 INTRODUCTION ... 1-1

1.1 Design for Validation Methodology .. 1-1
1.2 Avionics Architecture Synthesis Overview .. 1-5

2.0 ADVANCED
2.1
2.2

2.3

2.4

LAUNCH SYSTEM REQUIREMENTS 2-1
Functional Requirements .. 2-1
Performance Requirements .. 2-1
2.2.1 Processing Requirements ... 2-1

2.2.1.1 Advanced Launch System (ALS) Raw Requirements 2-1
2.2.1.2 Derived Requirements .. 2-12

2.2.2 I/O and Interfunction Communication Requirements 2-15
2.2.2.1 Core b'TP I/O .. 2-23

2.2.2.2 Core FTP - Propulsion FTP Communications 2-24
2.2.2.3 Propulsion FTP I/O ... 2-25
2.2.2.4 Summary of I/O and Interfunction Communication

Requirements .. 2-26
RMA and Environmental Requirements .. 2-26
2.3.1 Reliability and Availability ... 2-26
2.3.2 Maintainability .. 2-28
2.3.3 Component Quality ... 2-29
2.3.4 Radiation Hardness ... 2-31

2.3.5 Power Dissipation 2-31
Requirements Conclusions ... 2-32

3.0 AIPS ARCHYI'EC'FURE OVERVIEW .. 3-1

3.1 Building Blocks ... 3-1
3.2 Virtual Architecture ... 3-2

3.3 Physical Architecture ... 3-4
3.4 System Services .. 3-7
3-5 Flight System Characteristics of Building Blocks 3-9

3.5.1 Functional Building Blocks .. 3-9
3.5.1.1 Fault Tolerant Processor Channel 3-9

3.5.1.1.1 Processor .. 3-10
3.5.1.1.2 Shared Devices 3-11
3.5.1.1.3 ICIS and IOS Hardware 3-11

3.5.1.1.4 Communicator and Interstage 3-15

3.5.1.1.5 FTC and 40 MHz Signal Determinism 3-19
3.5.1.2 Communications Node ... 3-19

3.5.1.2.1 Node Controller 3-21
3.5.1.2.2 Communications Port Receiver/Transmitter 3-22

3.5.2 Projected Performance Parameters ... 3-23
3.5.2.1 Fault Tolerant Processor Channel 3-23
3.5.2.2 Communications Node ... 3-24

3.5.2.3 AIPS for ALS Avionics Packaging 3-24
3.5.3 Hardware Failure Rate Projections ... 3-24
3.5.4 Performance Projections of AIPS for ALS Building Blocks 3-32

iii

I PRECEDING PAGE E{LANK NO'r FILMED

4.0 PRELIMINARY ALS AVIONICS ARCHITECTURE 4-1
4.1 Virtual Architecture ... 4-1

4.2 Physical Architecture 4-4
4.3 Physical Characteristics .. 4-6
4.4 Reliability and Availability Projections ... 4-7
4.5 Architecture Summary and Conclusions .. 4-10

5.0 IMPACT OF AIPS/ALS ARCHITECTURE ON ALS COST 5-1
5.1 Introduction ... 5-1
5.2 Problem Definition ... 5-1

5.2.1 General Description ... 5-1
5.2.2 Contributors to Cost ... 5-2
5.2.3 Architecture Definitions ... 5-3

5.2.3.1 Architecture 1 5-4
5.2.3.2 Architecture 2 ... 5-6

5.3 The Cost Model ... 5-6

5.3.1 System Parameters .. 5-7
5.3.2 Cost of System ... 5-7
5.3.3 Cost of Launch Weight ... 5-8
5.3.4 Cost of Unreliability ... 5-8

5.3.4.1 On the Launch Pad .. 5-10
5.3.4.1.1 Architecture 1 .. 5-11
5.3.4.1.2 Architecture 2 .. 5-13

5.3.4.2 During Launch and Hight .. 5-21
5.3.4.2.1 Architecture 1 .. 5-21
5.3.4.2.2 Architecture 2 .. 5-23

5.3.5 Total Cost .. 5-24
5.4 Results .. 5-24

5.5 Conclusions and Suggestons for Future Work 5-29

6.0 SUMMARY AND CONCLUSIONS .. 6-1

7.0 REFERENCES ... 7-1

APPENDIX A HIGHEST LEVEL SPREADSHEET OF THE COST MODEL A-1

APPENDIX B MODEL REDUCTION TECHNIQUE FOR FTP ANALYSIS B-1

iv

LIST OF ILLUSTRATIONS

Figure Title Page

1-1.

2-1.
2-2.
2-3.
2-4.

2-5.

3-1.
3-2.
3-3.
3-4.

3-5.

3-6.
3-7.
3-8.
3-9.
3-10.
3-11.
3-12.
3-13.
3-14.
3-15.
3-16.
3-17.
5-1.
5-2.
5-3.
5-4.

5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
5-11.
5-12.

AIPS Design for Validation Methodology ... 1-2
ALS Avionics System Functions ... 2-2
LASS (MM Coded) Benchmark Results .. 2-13
LASS (CSDL Coded) Benchmark Results ... 2-13
Functional Partitioning and I/O and Interfunction Communication Bandwidths
for the ALS ... 2-27
SEM-E Module ... 2-30

AIPS Hardware Building Blocks ... 3-2
AIPS Virtual Architecture .. 3-3

AIPS Processing Site Virtual Architecture ... 3-5
AIPS Quad Redundant Fault Tolerant Processor: Fault Containment Regions
and Interconnections .. 3-5

AIPS Engineering Model Configuration ... 3-8
Fault Tolerant Processor Channel .. 3-10

Network Interface Sequencer ... 3-12
IC and I/O Network Data Frame Format .. 3-14

Network Arbitration Timing .. 3-15
FTP Communicator .. 3-17

FTP Interstage .. 3-18
FTP Fault Tolerant Clock Topology ... 3-20
FTC "Majority" Voter Operation ... 3-20
Clock Corrections .. 3-21
Communications Node .. 3-22
Node Port ... 3-23

AIPS for ALS Packaging Concept'. ... 3-25
Architecture 1 .. 5-5
Architecture 2 .. 5-5
Pad Markov Model for Architecture 1 ... 5-15

Triplex FTP Markov Model .. 5-16
Reduced Triplex FTP Markov Model ... 5-20
Launch/Flight Markov Model for Architecture 1 5-22
Baseline Results .. 5-26

Sensitivity to Component Quality .. 5-28
Sensitivity to Payload Value .. 5-29
Sensitivity to Time on Pad .. 5-31
Sensitivity to Flight Time ... 5-32
Sensitivity to Repair Time .. 5-33

l-1.

B-2.
B-3.
B-4.
B-5.

Detailed Markov Model of a Triplex FTP .. B-3
Notation Convention ... B-6

Reduced Markov Model of a Triplex FTP ... B- 10
Markov Model of a Dual FTP ... B- 13
Reduced Markov Model of a Dual F'I'P .. B- 13

V

vi

LIST OF TABLES

Table Title Page

2-1.

2-2.

2-3.

2-4.

2-5.

2-6.

2-7.

2-8.

2-9.

2-10.

2-11.

2-12.

2-13.

2-14.

2-15.

2-16.

2-17.

2-18.

2-19.

3-1.

3-2.

3-3.

3-4.

3-5.

3-6.

3-7.

3-8.

3-9.

3-10.

3-11.

3-12.

3-13.

3-14.

3-15.

3-16.

4-1.

4-2.

4-3.

5-1.

Central Control & Processing ... 2-5

Winds Ahead Determination ... 2-6

Vehicle Power System Management ... 2-7

Steering & Staging Control .. 2-8

Sensor Processing .. 2-9

Propulsion Control .. 2-10

Command & Telemetry Processing ... 2-11

Range Safety & Destruct .. 2-11

Programmable Payload I/F ... 2-12

Central Control & Processing (Modified) .. 2-16

Winds Ahead Determination (Modified) .. 2-17

Vehicle Power System Management (Modified) 2-18

Steering & Staging Control (Modified) ... 2-19

Sensor Processing (Modified) ... 2-20

Propulsion Control (Modified) ... 2-21

Command & TLM Processing (Modified) .. 2-22

Range Safety & Destruct (Modified) 2-22

Programmable Payload I/F (Modified) .. 2-23

Aggregate UO and Interfunction Communication Bandwidths for ALS 2-26

CPU Module Parts List (Ground Fixed) .. 3-28

CPU Module Parts List (Missile Launch) .. 3-28

Shared Devices Module Parts List (Ground Fixed) 3-29

Shared Devices Module Parts List (Missile Launch) 3-29

COM/INT Module Parts List (Ground Fixed) 3-29

COM/INT Module Parts List (Missile Launch) 3-29

NIS Module Parts List (Ground Fixed) ... 3-30

ICIC/IOS Module Parts List (Missile Launch) 3-30

CN Module Parts List (Ground Fixed) ... 3-30

CN Module Parts List (Missile Launch) .. 3-30

Channel and CN Failure Rates (Ground Fixed) 3-31

Channel and CN Failure Rates (Missile Launch/Boost Phase) 3-31

Channel and CN Failure Rates (On-orbit) .. 3-31

AIPS/ALS FTP and Local System Services Performance 3-34

AIPS/ALS I/O Network and I/O System Services Performance 3-35

AIPS/ALS IC Network and IC Communication Services Performance 3-35

AIPS/ALS Fault Tolerant Processor Physical Characteristics 4-6

Availability and Reliability of ALS Avionics (Quad FTPs) 4-9

Availability and Reliability of ALS Avionics (Triplex F/'Ps) 4-9

States of Architecture 1 Pad Markov Model .. 5-12

5=2.

5-2.

5-3.

5-4.

5-5.

5=6.

Transition Rates for FrP Markov Model ... 5-17

Transition Rates for FTP Markov Model (Cont.) 5-18

Symbol Definitions for FTP Markov Model 5-19

States of Architecture I Launch Markov Model 5-23

Initial Probabilities of Launch/Flight Markov Model for First Detected Failure

Repair Strategy of Architecture 1 .. 5-23

Component Quality Factors .. 5-27

°°o

Vlll

ADVANCED INFORMATION PROCESSING SYSTEM

FOR

ADVANCED LAUNCH SYSTEM:

AVIONICS ARCHITECTURE SYNTHESIS

1.0 INTRODUCTION

The goal of the Advanced Information Processing System (AIPS) is to achieve a

validated fault tolerant distributed computer system architecture to meet the real time

computational needs of advanced aerospace vehicles. One such vehicle is the Advanced

Launch System (ALS) being developed jointly by the National Aeronautics and Space

Administration and the Department of Defense to launch heavy payloads into low earth

orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An

avionics architecture that utilizes the AIPS hardware and software building blocks has been

synthesized for ALS. This report describes the AIPS for ALS architecture synthesis

process starting with the ALS mission requirements and ending with an analysis of the

candidate ALS avionics architecture.

1.1 Design for Validation Methodology

The ALS architecture synthesis process follows a new design for validation

methodology that has been developed as part of the AIPS program to assure that fault

tolerant computer system architectures for advanced applications meet the reliability,

performance and other goals of the application. The design methodology is described in

detail and compared to the conventional avionics design methodology in an accompanying

report [1]. It is recapitulated here briefly to put various steps of the ALS architecture

synthesis process in context.

In the AIPS design for validation methodology, a set of functional requirements is

derived from the mission requirements and translated into avionics requirements, as shown

in Figure 1-1. These avionics requirements are then mapped into hardware and software

building blocks using a knowledgebase and future technology projections. Validation of

the AIPS building blocks and generation of the knowledgebase and technology projections

are goals of the AIPS program. The validation is being addressed using a combination of

mathematical proofs, analytical models, and empirical test and evaluation. The architecture

knowledgebase allows the designer to synthesize the architecture in accordance with rules

and guidelines such that the fundamental principles of fault tolerance are adhered to and

rationale for each design decision is related to overall mission requirements. The building

block knowledgebase provides the designer with a detailed characterization of the

performability and other important parameters of each building block. These

characterizations, in conjunction with advanced technology projections, are used to project

1-1

I ALS Mission Requirements /
(Mission Scenario &

Operational Env_nmen0

I
System Functional R_uirements I

(GN&C, Propulsion Control,]Vehicle Health Monitor)

I
Avion_ P._m

(Performance, RMA, WL, Vol.,
Power, Cost)

Building

S_thesizeCandidate
AvionicsArchitectures

i
I An_yze RMA, Performance, etc.[for ALS Mission Scenario [

I

I

1
v[(Brass Board, ASIC Designs)

I
Validate Brass Boardand ASIC Impleraentation

I
Inmgmm withVehicle Subsystems I

RMA, Vol,

AIPS Architecture
Knowledgebase (Arch
Rules, Guidelines,
Atlributes Graph)

Figure 1-1. AIPS Design for Validation Methodology

1-2

building blocks implementedin state-of-the-art hardware and software technology. The

AIPS hardware and software building blocks have been designed such that their major

attributes such as Byzantine resilient fault tolerance, simplex programming model,

reconfigurability, rigorous separation of redundancy management and applications

software, etc. are not dependent on any specific technology of implementation. (The goal

of the AIPS program is to validate these and other reliability and performance attributes of

the AIPS hardware and software building blocks and make these building blocks available

to programs like the ALS.) Furthermore, the system services are implemented such that

their overheads become smaller as the processor and communication speeds increase.

Therefore, the building blocks do not become obsolete with technology advancements.

Their performance increases in direct proportion to improvements in processing and

communication speeds.

This design methodology makes the architecture synthesis task much less of an art

and personal judgement and provides a solid foundation of knowledgebase on which to

base design decisions. In the conventional design methodology, validation of the

architectural characteristics such as redundancy management, reliability, maintainability,

performance, etc. is done in parallel with the validation of the specific hardware and

software implementation of the design. The design for validation methodology decouples

the validation of the architecture design from the validation of a specific hardware and

software implementation of that design. The combination of architectural rules and

guidelines, the prevalidated building blocks knowledgebase and the analytical models of the

performability of the synthesized architecture assure a validated architecture. A validated

architecture is defined to be an architectural concept that when implemented in hardware

and software will meet various mission requirements such as reliability, throughput,

transport lag, cost, weight, volume, power, etc.

Section 2 of this report describes the ALS requirements. The very high level

requirements were collectively obtained from the three prime contractors, Boeing, General

Dynamics, and Martin Marietta, and provided to Draper by Martin Marietta. These include

the general ALS mission scenario and related parameters such as time on the launch pad,

launch availability, mission duration and reliability. Other ALS requirements include ALS

computational functions such as Guidance, Control, Navigation, etc. The functional

requirements were translated into detailed computational requirements such as throughput,

memory, processing lag, function iteration rate, I/O and interfunction communication rates,

etc., by Martin Marietta with some feedback from and interaction with Draper on the format

and content. These "raw" computational requirements were then convened into "derived"

requirements by Dr-dper with Martin Marietta's assistance. The conversion was necessary

to accurately reflect the overheads of the Ada language and compiler to be used in

programming AIPS for ALS compared to the assembly languages that have traditionally

been used to program the launch vehicle avionics.

1-3

The AIPS architecturalattributes,rules and guidelines,and reliabilityand

performance models of the buildingblocks are described in detailin the accompanying

report"Advanced InformationProcessingSystem: Design and ValidationKnowledgcbase"

[I]. Italsocontainsreferencesto the more detailedhardware and software specifications

and simulationsthatconstitutethe AIPS knowledgebasc. This knowledgebase, which is

quitelarge,isrequiredto synthesizea validatedALS avionicsarchitecture.Section 3 of

thisreportbrieflyrecapitulatesthe AIPS virtualand physical architecturesand the key

attributesof the hardware and softwarebuildingblocks.

The AIPS architectureand itsattributesarc transparentto the microclectronics

technology. The hardware building blocks can be implemented in the state-of-the-art

technologyforimproved performance and reliabilitywhile stillretainingallof thevalidated

characteristicsof theAIPS architecture.Similarly,the software buildingblocks,i.e.,the

system services,can be irnplcmentedusing thelatestAda run time system and compiler. In

order to projectthe reliabilityand performance thatcan be expected of the AIPS building

blocksiftheywere implemented using thetechnologythatwillbe availableintheALS time

frame, a tasktosurvey thetechnologywas undertaken.An accompanying report"Advance

Information Processing System for Advanced Launch System: Hardware Technology

Survey and Projections"[2] describesthe resultsof thissurvey in detail.Section 3.6 of

thisreportdescribesthe flightsystem characteristics,includinghardware implementation,

performance projections,and module failurerateprojections,of theAIPS forALS building

blocks.

The projected building block performability characteristics are then used to

configure a candidate AIPS for ALS avionics architecture that meets the _ performance

and reliability requirements. This process of configuring the building blocks is explained

in greater detail in the next subsection 1.2. The resulting ALS avionics architecture is

describedinSection4 of thisreport.

The reliability and performance of the candidate ALS avionics architecture have

been modeled using the generic models of the AIPS building blocks developed earlier [1]

but using the ALS specific parameters. The ALS specific parameters include the mission

duration, launch pad time, repair strategy and other mission related parameters as well as

the specifics of the AIPS for ALS building blocks such as the projected module failure

rates, the fault detection, isolation and recovery times, various operating system service

and redundancy management overheads, etc. Section 4.3 provides the details of the

reliability and performance projections of the ALS avionics architecture.

Further refinement of the architecture would be necessary if the projected

performability does not meet the ALS requirements. After the configuration has been

revised to meet the requirements, the next step in the ALS avionics design would be the

detailed design of the hardware and software building blocks using the state-of-the-art

microelectronics and software technology. This was outside the scope of the present study

1-4

contract. Section6 summarizes the results of this study with some thoughts on the steps

necessary to reach a validated AIPS for ALS flight system hardware and software.

One of the prime drivers of the Advanced Launch System design is the reduction in

the cost of launching a pound of payload by an order of magnitude over the current launch

vehicles. The AI.,S on-board computer systems have the potential to reduce the operational

cost by automating a number of functions that are now performed manually by "standing

armies" of ground controllers, by making the launch window less vulnerable to weather

through the use of adaptive navigation and guidance algorithms, by reducing the cost of

launch pad operations through "maintenance free" fault tolerant computers and by reducing

the cost of launch vehicle failures through the use of fault tolerance techniques. In

addition, the cost of the avionics themselves can be reduced by changing the current design

philosophy of single-string, non-fault tolerant systems built out of the highest quality

(Class S) components with additional quality control checks at every stage from

manufacture to launch to a philosophy of fault tolerant systems that do not use the most

expensive components but are actually more reliable than single string systems. Section 5

of this report discusses in detail the impact of the AIPS for ALS architecture on the ALS

cost.

1.2 Avionics Architecture Synthesis Overview

Architecture synthesis can be thought of as a constrained optimization problem. At

the highest level the problem objective can be stated as: minimize cost subject to meeting all

the avionics requirements. Cost studies, including the one described in Section 5 of this

report, have shown that fault tolerant avionics constructed out of Class B components can

be more cost effective for the ALS as a whole than single string avionics built out of Class

S parts. Since the AIPS architecture provides prevalidated fault tolerant building blocks for

ALS type applications, the architecture synthesis problem can be restated as: configure

AIPS hardware and software building blocks to meet the ALS avionics requirements.

As discussed in the preceding section on the design for validation methodology,

AIPS for ALS configuration(s) are defined using as inputs the AIPS architectural rules,

guidelines and attributes, the projected reliability, performance, physical characteristics and

other attributes of the building blocks, and the ALS avionics requirements. The process of

matching the avionics requirements with the building block capabilities is a

multidimensional problem. However, it can be simplified by decomposing the

requirements into two orthogonal sets each of which can be mapped independently of the

other as a first order approximation and each of which determines a different aspect of the

architecture. The performance related ALS requirements such as throughput, memory,

transport lag, input/output latencies, etc. determine the virtual avionics architecture. The

reliability related ALS requirements such as probability of mission success, launch

availability, launch pad maintenance, function criticality, etc. determine the physical
avionics architecture.

1-5

The virtual avionicsarchitecturedefinition includesthe numberof Fault Tolerant
Processors(FTPs),allocationof functionsto FTPs,partitioningof functionsbetweenthe
ComputationalProcessor(CP)andtheI/t9 Processor(lOP) within eachFTP, thenumber
andtypeof sensorsandactuatorsandtheir interconnectionsto FTPsvia theI/O networks,
etc. The physical avionics architecture definition includes such parametersas the
redundancylevel of FTPs,theredundancylevelsof Inter-ComputerandI/O networks,the
physical topologiesof networks,theredundancylevelof sensors,actuatorsandotherI/O
devices,thecross-strappingof I/O devicesto channelsof FTPsandtheredundancylevels
of interfaces,etc.

A preliminary virtual architecture can be defined by grouping and allocating functions

to processing sites, grouping and allocating corresponding sensors and actuators to the

same FTPs, and partitioning the functions in each site between the IOP and the CP. A

subset of the AIPS System Services and modes of operation, such as scheduling of tasks,

definition of//O chains to acquire sensor data and send out actuator commands, etc. can

then be selected to complete the virtual architecture definition. Criteria for grouping

functions in one processing site include functions requiring time critical or high

communication rates, physical location (e.g. propulsion controller to be located on the

engine or recoverable avionics to be located in a separate module), like-criticality functions,

etc. Some of the constraints for grouping and allocating functions to one processing site

include the maximum useful throughput available in an FTP and the FTP data exchange

bandwidth which is necessary to perform interactive consistency and internal congruent

distribution of all the sensors connected to that FTP at the iteration rates necessary to

support all the functions executing in that FTP. Once a preliminary allocation of functions

has been completed, one can determine using the ADAS (Architecture Design and

Assessment System) tool and simulations whether the performance criteria have been met.

These include the transport lag for each function, inter-function communication latencies

and rates, processor utilization and reserve throughput, etc. Functions can be reallocated,

regrouped or number of processing sites added or deleted depending upon the results of

performance modeling. The preliminary virtual architecture can be fine tuned using the

results of the analytical models which are described in Section 4 of [1].

The process of defining, analyzing and fine tuning the physical architecture is similar

to that for the virtual architecture; only the analysis tools and measures of merit are

different. The analysis tools include the Markov models, combinatorial models, etc. The

measures of merit include the probability of mission success, launch availability,

probability of repair on the launch pad, etc.

Preliminary AIPS for ALS virtual and physical avionics architectures are presented in

Sections 4.1 and 4.2, respectively, of this report. A preliminary set of reliability and

availability projections are described in Section 4.3.

1-6

2.0 ADVANCED LAUNCH SYSTEM REQUIREMENTS

As explained in the introductory section of this report, one of the inputs to the ALS

architecture synthesis process is the set of ALS requirements. The very high level

requirements were collectively obtained from the three prime contractors, Boeing, General

Dynamics, and Martin Marietta, and provided to Draper by Martin Marietta. These include

the general ALS mission scenario and related parameters such as time on the launch pad,

launch availability, mission duration and reliability. Other ALS requirements include ALS

computational functions such as Guidance, Control, Navigation, etc. The functional

requirements were translated into detailed computational requirements such as throughput,

memory, processing lag, function iteration rate, I/0 and inteffunction communication rates,

etc., by Martin Marietta with some feedback from and interaction with Draper on the format

of the contents. These "raw" computational requirements were then converted into

"derived" requirements by Draper with Martin Marietta's assistance. The conversion was

necessary to accurately reflect the overheads of the Ada language and compiler to be used in

programming AIPS for ALS compared to the assembly languages that have traditionally

been used to program the launch vehicle avionics.

Section 2.1 describes the ALS functional requirements. The functional

requirements were translated into processing requirements, described in Section 2.2.1, and

I/O and interfunction communication requirements, described in Section 2.2.2. Section 2.3

captures the other ALS requirements such as reliability, maintainability, availability and

operating environment.

2.1 Functional Requirements

Nine top-level ALS functions have been identified by Martin Marietta: Central

Control and Processing, Winds Ahead Determination, Vehicle Power System Management,

Steering and Staging Control, Sensor Processing, Propulsion Control, Command and

Telemetry Processing, Range Safety and Destruct, and Programmable Payload Interface.

Figure 2-1 shows the top level requirements along with the breakdown of each function

into its next level component sub-functions for all except the Programmable Payload

Interface. The function hierarchy is three levels deep, with functions at the third level

assumed to be equivalent to executable, dispatchable tasks.

2.2 Performance Requirements

2.2.1 Processing Requirements

2.2.1.1 Advanced Launch System (ALS) Raw Requirements

The ALS computational and interfunction communication requirements were

provided to CSDL in the format of two Hypercard TM documents: one describes processing

requirements and the other describes interfunction communication requirements [3, 4]. The

most recent such requirements received by CSDL were dated December 7, 1989.

2-1

entrl Controq [Winds/[head

k Proce_,,,ng] [Determination

.[Navigation Compute& IMU] -'] Wind Profik

Control

.[Commi

Ve_

WheelsInfo

I
I

_eb_le vower I
.. System I
_tana_ement I

ALS Avionics [System Fum_iom

u_Conu_ll Vraa_1_# I
/

/ L'rov_ I I IPm_ale & I

__ A_iva_eStaging / I

I
Propulsion

Control

sumap
ion&

[Store

I " I

_ Loacl TLMTable]

._ Save TLM
Table J

i

Propulsion -4 Umbilical

Range Safety R_mst

Figure 2.1. ALS Avionics System Functions

The ALS processing requirements are expressed by Martin Marietta in a

hierarchical, data/low-like representation. Currently, the function hierarchy is three levels

deep, with functions at the third level assumed to be equivalent to executable, dispatchable

tasks. Nine top-level functions have been identified. Computational requirements are

given at multiple layers of the hierarchy, with the requirements of a higher-level function

consisting of aggregate summations of the numerical requirements of its lower-level con-

stituent functions. These aggregates have been observed to give an upper bound on the

throughput requirements. To perform an accurate and meaningful synthesis of the avionics

system, the following requirements are needed for each dispatchable task (level three in the

representation hierarchy):

Frame rate

Throughput (or instructions per execution)

2-2

Throughputmargin
Processinglag
Schedulingrequirements(e.g.,preemptibleor nonpreemptible)
Taskexecutionorderdependencies
Inter-functioncommunicationrequirements(bitsperiteration,latency)

Given thisdatait is possibleto constructa distributedschedulefor thetask suite
and quantitatively perform systemsizing and determineperformanceparameters.The
currentsetof requirementsdoesnotyet possessthis levelof detail,soseveralsimplifying
assumptionsaremadeto allowaroughsystemsizing.First, it is assumedthatall tasksare
preemptiblewithin their frameby higher-frequencytasks,as long asthepreemptedtasks
completetheir executionwithin that frame.This allows the throughpututilization of a
processorto bedeterminedby summingthethroughputrequirementsof thetasksit hosts.
Thesecondassumptionis that theprocessinglag requirementwill bemetif theprocessor
possessesthethroughputto executetherequisitenumberof instructionsof ataskiteration
within the processinglag. It is realized that thesetwo assumptionsmay be mutually
inconsistentsincea taskwhich is preemptedwithin its framemaynot meetits processing
lag requirement.However,reconciliationof this potentialinconsistencymustbedeferred
until thedetailedrequirementsareavailable.

CSDL has transferredthe availablenumbersfrom the Hypercard documents to

spreadsheets to facilitate their manipulation. The spreadsheets are presented as Tables 2-1

to 2-9 and are interpreted as follows.

Column A: Name and Number of Task(Note 1)

Column B: Frame Rate F(Note 1)

Column C: Throughput T0(N°te 1)

Column D: Margin M(N ote 1)

Column E: Processing Lag L(Note 1)

Column F: Margined Throughput TM = T0(I+M)(Note 2)

Column F Row 4: Total Margined Throughput Required = _ TM(N ote 3).

Column G: Instructions per Execution IE = TM/F

Column H: Instantaneous Throughput IT = IE/L.

Column H Row 4:

Maximum Instantaneous Throughput Required = max(IT).

Each task is identified by a name and a hierarchical number (Column A). The number

indicates the place of the task or function in the three-level hierarchy of functional

requirements. For example, Kalman Filter (1.2.4) is Task 4 of the Nav/IMU (1.2)

function which is sub-function 2 of the Central Control & Processing (1) function.

The Frame Rate (Column B) is the iteration rate in Hertz of the task. For example,

Kalman Filter task must execute at 25 Hz.

The Throughput TO (Column C) is the throughput, measured in instructions per

second, required to perform a task. For example, Kalman Filter task is estimated to require

3.2 million instructions per second throughput.

The margin M (Column D) is the additional throughput requirement for a task. The

margine is provided for the uncertainty in estimating the throughput or for growth

purposes. The margin for Kalman Filter task, for example, is 0.5. The total throughput

required for this task is T0(I+M) or 4.8 MIPS. This is called the Margined Throughput

TM and is shown in Column F. The sum of all the margined throughputs for the tasks

under a function is shown for each function in Column F, Row 4 of each table. For

example, the total throughput for Central Control and Processing function is 21.8 MIPS, as

shown in Table 2-1.

The maximum allowable processing lag for each task is shown in Column E. This is

the interval from the time a task needs its inputs to the time it produces its outputs. The

maximum allowable processing lag for Kalman Filter task, for example, is 36 milliseconds.

The number of instructions executed by a task per iteration is shown in Column G and

is obtained by dividing the margined throughput TM by the frame rate F. For example,

Kalman Filter task executes 210,000 instructions every iteration. The instantaneous

throughput IT is the processing throughput required to execute a task within the requisite

processing lag and is shown in Column H. For Kalman Filter task, this number is 5.83

MIPS.

Column H, Row 4 of every table indicates the maximum instantaneous throughput

required for that function. For example, the Central Control and Processing function

requires 10.72 MIPS to be able to perform the system identification task (1.4.3) within the

required 10 msec processing lag. This number represents a lower bound on the throughput

required of the processor

Notes:

1. From Martin Marietta ALS Specs.

2. Changed from TM = T0/(1-M) to prevent blowup at M=I.

3. Assuming preemptive scheduling.

Also, note that boldface italicized numbers represent CSDL guesses. Italicized

numbers represent Martin Marietta-supplied aggregates and are not used in calculations

unless otherwise noted.

2-4

A I B C D E F G H

I Frame Thruput Marqin Ins/Exec Instant1

2

3

4

5

6

7

8

9

10

Rate (Hzl (IPS)

Central Control and Processing 1

Exec 1.1 I
Central Control 1.1.1

I 100J 30,000 0.5

Tim Fn_l & Sequence 1.1.2

1001 30,000 0.2
IPS Self-Test 1.1.3

I 1 I 40,000 1

1 1 IPS Fault Detect & M_lmt 1.1.4

1 2 I 251 50.0001 1

1 3 Subsystem Status Monitor 1.1.5

1 4 I 251 38.0001 0.5

1 5 Mission Phase Sequence Gen 1.1.6

1 6 I 1ooI 5.ooo 0.2
1 7 Data Reportln_ 1.1.7

1 8 I 5 01 20,000 1
1 9 Nav/IMU 1.2 I

Proc. Margined
Laq (ms) Throu.qhput

Required

sum: 21,829,396

8 45,000

0.8 36,000

max:

450

360

200 80.000 80,000

rhruput (IPS

Required

10,722,625

56,250

450,000

400,000

10 100,000 4,000 400,000

101 57,000 2,280 228,000

5 6.000 60 12,000!

1 40,000 800 800.000

2 0 MU Processln_ 1.2.1

2 1 l 1001 3,200,000

2 2 GPS processinq 1.2,2
2 3 I 100 3,200,000 0.2

2 4 Erro r Compe_satior t 1.2.3
2 5 I 300 25,000 0.5

2 6 Kalmaq Filterln_i 1.2.4

27 I 251 3,500,000 0.5
8 Nay I,=]_qpc 1.2.5

2 9 I 100 1,000 1
3 0 FDI 1.2.6

3 1 I 501 132,000 0.5

3 2 Bendln_l Processincj 1.2.7

3 3 I 1001 1,200 0.2
3 4 Adptve Gdnce 1.3

3 5 Two-body Linear Guidance 1.3.1

3 6 I so I 37,5001 0.2

3 7 Non-Linear TraJ Shaping 1.3.2

38 I 11 3,300,000 0.2
3 9 contingency control 1.3.3

4 0 I _ I 1,ooo 1
41 Adaptive Control 1.4

0.2 10 3,840,000 38,400

10 3,840,000 38,400

1 37,500 1 25

36 5.250.000 210.000

6 _,000 20

0.5 198,000 3,960

0.1 1,440 1 4

15 45,000 900

960 3,960,000 3,960,000

1 2,000 2,000

3.840.000

3,840,000

125,000

5.833,333

31333

7,920,000

144,000

60.000

4,125,000

2,000,000

4 _ Mode_ Rqpferen(_9 Adaptive C0ntrolh r 1.4_1
43] 50 505,100 0.25 10 631,375 • 12,628 1,262,750

4 4 Classical Autopilol r 1_4.2
4 5 | 501 542,35(:] 0.5 10 813,525 16,271 1=627=050

4 6 Syste m Identification 1_.4.3
4 7 I 25l 2,144,525l 0.25 1 0 2.680,656 107,226 10,722,625

4 8 System RM 1.5 (Include_ CSDL RMI task thr)uqhput_l sp_)roxlmet_d as 50KIPS/3|

4 9 Fault Response 1.5.1
5o I _5l t7,090 1 40 _14.000 1,3(_Q 34.000
5 1 Fault Determine & Isolate 1.5.2

5 2 I 251 17.0001 1 40 34,000 1,360 34,000

5 3 Conflcjuratlon Manager 1.5.3

54 I 25| 17,000 1 40 34,000 1,360 34,000
5 5 Gen Discretes 1.6

5 6 Validate Commands 1.6.1

5 7 | 501 4,200 1 2 8,400 168 84,000

5 8 Update Outputs 1.6.2

5 9 I 501 4,000 1 2 8,000 160 80,000

6 0 Discrete Error HendllncJ 1.6.3

5 1 I I I 1,0001 1 0.5 2,000 2,000 4.000.000
52 Det G&C Wnd Dltas 1.7 {no task throughputslavailable)

6 3 I I I 29,000 I 0.5 20 43,500

6 4 Load Relief Algorithm 1.7.1

65 I lOOl ol o lO o o o
6 6 Estimate Fluctuation Stats 1.7.2

6 7 I 1ool ol o 1 o o o o

Table 2-1. Central Control & Processing

2-5

A B C D

1 Frame Thruput Mar.gin

2 Rate (Hz) (IPS)

E F

Proc. Margined

L.a9 (ms) Throughput
3 Winds Ahead Oeterminstion 2

4 I _um:5 1 520,000 0.5 500

6 Manage Measurement Resources 2.1
7 I i I 100 1 1
8 Lidar Cal and Checkout 2.1.1

, I 11 o 1 1
1 0 Lider BITE 2,1,2

11 I 251 6,000 0.5 1
12 Lidar Fault Handling 2.1.3
1 3 I 251 0 0 1
1 4 Lidar Health Monitoring 2.1.4

1 5 I 501 3,000 0.5 1

1 6 Compute Wind Profile 2.2

Required
670.800

17 I
1 $ Lldar mode Co ltrol 2.2.1
19 1 0 1 1

20 Winds Measurement Fitting 2.2.2
21 I 1l 520,000 0.2 950

2 2 Vibration Compensation 2.2.3

2 3 J 50 5rooo 0.5

2 4 Bending Compensation 2.2.4
2 5 I 50 10,000 1 5
2 6 Control Velocimeter 2.3

G H

InslExec

max:

Instan t
r'hruput (IPS)

Required
656.842

0 0 0

9_000 360 360,000

0 0 0

4,500 90 90,000

0 0 0

624,000 624,000

1 7,500 1 50

20_000 400

0 0

0 0

0 0

0 0

656,842

150,000

80,000

0

0

0

0

0

0

120,000

120,000

;¢7 I 1oQI 2.000 1 1
2 8 Redundant Lidar Configuration Contr)1 2.3.1

29 I 100 0 0 1
3 0 Lidat Power Control 2.3.2

31 I 251 0 0 40
3 2 Receive end Process Winds Info 2.4

33 I sol aoo 1 I
3 4 Detection 2.4.1

3s I 1 o 1 1
36 Pulse Deconvolution 2.4.2

37 I 1 0 1 1

38 Range Determination 2.4.3

39 I 11 0 1 1
4 0 Doppler Frequency Estimation 2.4.4
41 1 0 1 1

4 2 Datl Collection & Formatting 2.4.5

4 3 I 1 600 1 1 0

4 4 Check Range w Exp Values 2.4.6
4 S I 1 5001 0.2 5

0 0

lr200

600

4.000

lr200

600

Table 2-2. Winds Ahead Determination

2-6

5
6
1
8
g

lO
11
12
13
14
15
16
17
18
lg
2o
21
22
23
24
25

AI " I O 0Frame Thruput Margin
Rats (Hz) (IPS)

Vehicle Power S'rstem Managel tent 3

E
Proc.

P

MarRIned

G
Ins/Exec

J 25 4, 600 05

Battsry Charge Mgmt 3.1
11 U 1

Charge Mgmt Exe¢ 3.1.1
I 1 U 1

control Chargin_ 3.1.2

Lag (ms)

sum:

Throughput
RKlUir_

_,900
6,9oo

max:
276

I u u

1 u u

J 1 0 1

Monitor Char_s 3.1.3

1 0 0

I 1l o 1
S-Qr Dot.-tiDe & Status Deter, _lnation 3.2

I 11 o 1
Pwr System Load Error Det 3.2,

I 11 9
Pwr Emergency ;tgr 3.2.2

I 1 0
Load Shedding
3.31 1(0
Dynamic Load Distribution 3.4

I 0

I 0

1 1 0

1 _ 0

1 1 0

1 1 O 0

1 1 0 0

I 11 o

Pwr System Load Control 3.4.1
I 1l 0

26 Mission Power Profile 3.4.2
27 I 11 0
28 Change Load Distribution 3.4.3

I 11 o
30 Power-Uo initialization _1.4.4
31 I 11 o
32 Monlt(_r L_ad &)rediL-t Dm_l=tl
33 J 1 0

1 1 0 0

1 1 0 0

1 1 0 0
_1.4_5

H
Instant

Thrupm(,PS_
Herluireo

138,000

138,000

1 I 0 0 0

Table 2-3. Vehicle Power System Management

2-7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

A B C D E

Frame !Thruput Marqin ProcT
Rate (Hz) (IPS) Lag (ms)

Steering & Staging Contror 4 sum:
I 50 ! 55r000 0.5 15

Provide Steerin q Signals 4,1
I 1 OI 0 1!

Id;ntlfy Changled Cards 4"1"10 0
Corn Cmd to Prey & Limit |=ate 4.1.2

I 1 0 o!
Gen New Steednq Slqnal 4 1.3

1 o 0
Report Stserin Cmd Error 4.1.4

I 1 0 0
Validate Stsedng Cmd Rea)onse 4.1

! 1 o 0
Select Outputs and Vedfy ;rods 4.2

I 50 I 5,000 1
Validate Dlscretes 4.2.1

I 0.4! 1r000 1
Activate Stagln] 4.3

I 1 0 Q
LFU Control & Aonitor 4.3.

I 1 0 0
Verify & Sequence Power Z1.3.2

I 1 II 0
Ordnance BIT 4.3.3

I 11 6,000 0.5
Fault handling 4.3.4

I 11 1 o
LFU Redundancy Control 4.3.5

I 1! 0 0
Activate Discrete Devices 1.4

F

Marcllned
Throughput
Required

103,502
62,50Q

G
Ins/Exec

H
Instant

Thruput (IPS)
Required

max: 1_800;000
1,650 110.000

0

11 0 0
Provide Discrete Outputs 4;4.1

I 1 0 0
RCS Control 4.5

1 0 0

RCS Error Gem _mte4,5,1
I 1 o o

:Phase Plane Control 4.5.2
I 1 0 0

RCS Command Generator
I 1 0

1 0

1 0

1 0

1 0

1 0

4 lO,OOO

4 2T000

1 0

1 0

1 1

0 0

0 0

0 0

o 0

0 0

0 0

200 50,000

5,000 11250T000

0 0

0 0

1 1,000

5 9,000 9,000 1,800,000

1 I! 1 1,000

1 0 0 0

1 0 0

1 0 O

1 0 13

1 0 0

1 0 0
L5.3

0 1 0 0

Table 2-4. Steering & Staging Control

2-8

A B C D
I Frame Thruput Margin
2 Rate (Hz) (IPS)
3 Sensor Processld,g 5
4[
5 ! 25 0.?,36,000 0.5
6 _rescale & Categ)rize Sensor: Data 5.1
7 I 25 12,500 i 0.5i 34
_1 Identify FOrmat 5,1,1
9 J 50 130.000 i 0.5

10 Filter & Store 5.1.2
11 I 50 812,0001 1!
12 Format-A Conver & Store 5.1. !
13 I 25 5,000 1
14 Format-B Conver & Store 5.1.i!
15] i 1! o I

50 90,000 . 1 5
18 iCompare W!t.h.Lllnlts 5.2.1
19 1 1 0 0 1
20 iAvem.qqln,q& Votln,q 5.2,2
21 I 1 O J 0 1
22 Count Limits Err(rs 5.2.3
23 I 1 0 0 1
24 Count Limits Err(rs 5.2.4
25 i '' 1 0 0'"
26 Select Redundan :v 5.2.5

i

;t7 i 1 0 O....... I,
28 Calibration & Validation S.3
29 I 25i 112,500 0.5 5 1
30 Determine Crltl_._lity 5.3.1
31 I 1 0 0 I
32 Manage Recove_ 5.3.2 , .
_ j i] u I u | 7
34 Ser;sor FsUit'_ole rance 5.¢0

35 I 75i 308,500 0.5 5
36 Limit Checks 5.4.
37 I 1 0 0
38 Consistency Ch_;ks 5.4.2
39[.............. ./.. 0 0!
40 Validation E.n'orFeport 5.4.2
41 J 1 0 0
42 l_;'ror& Failure Rq_porting5.5
43 I 1 i00 0.5 5

H
Instant

Thruput (IPS)

2,030,000

E F G
Proc. Margined Ins/Exec

Lag (ms) Throughput
Required

SUM: 2,6_10,651 Max:
34

40!.95000 3.900 _ _97_50_0__

161 1624000 32,480 2,030,000 _

40: 10000 400 10,000

i 1 I,ooo
i

180000 3,600 720,00_0____

....... 0 0 0

o o o

0 0 0

1 0 0 0

o o 0

166750 6,750 113501000

0 0 _0

U o U

1.234.000

o

0

462750 6.17O

i o o

1 0 0

0 01 0

150 150 30,000

Table 2-5. Sensor Processing

2-9

A e C
Fmme Thruput

Rate (Hz) (IPS)
Pro)ulsion Control 6

5o Io_ooo,ooo

Ma In Proc.

Laa (ms)

SUM:

1 15

F
Margined

Throuahput

Required
20r000r000

20r0001000

1

2
3
4

5
6 Manage Propulsion and Fault Tolerance 6.1
7 I I ol o
8 Prop Cntrllr Timing & Exec 6.1.1
9 I 1 o o

10 Prop Memory Mgrnt 6.1.2
11 I 1 0 0
12 Prop Fault Mgmt 6.1.3

13 I I 0 0
14 Update Data Tablts & Report 6.2
15 1 0 0

16 Report Enaine St dull 6.2.1

17 I 1 0 0

18 Update Table 6.2.2
19 I 1 0 0
20 Process Commands 6.3

21 I 1 o 0
22 Monitor and Verlf_ Commands 6.3.1

23 I / o o
24 Compute Valve Position 6.4
25 I 1 0 0

26 Enqine Control Loops 6.4.1
27 J 1 0 0
28 Update Actuator Positions 6.4.2

29 I 1 0 I o
_10 [tom)are Actuator Model 6.4.3
31 1 0 I 0

32 Process Propulsion Sensors 6.5

33 I 1 0 0
34 Sensor Data Scellng 6.5.1

35 I 1 0 0
36 Redun Sensor Process and Qual 6.5.2

37 I I OI OI
38 Limit Monitor & Failure Detect 6.5.3

39 I 1 o I o
40 Sensor Failure Handler 6.5.4

41 I 1 O I 0

G
Ins/Exec

Max:

400rO_

H
Instant

rhruvut tiPS1

26r666r667
26r666,667

1 0 0 0

f

1 0 0 0

I 0 0 0

I 0 0 0

1 0 0 0

1 0 0 0

0 0 0

0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

Table 2-6. Propulsion Control

2-10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

1
z
3
4
5
5
7
U
9

10
11

"T2--
13
14
15
15
17
1u
19
2O
21
zz
23
24
25
25
27
28
29
30
31

A B C D E

Frame Thruput Margin
Rate (Hz) (IPS)

Command & TLM Processlm 7
[25 350, 000 O.5

Decode & Process Command Data 7.1
J 1 0 0

Decode & Verify Commands 7.1.1

I 1 0 0
Validate Ground Data 7.1.2

1 1 0
Command Acce)tance 7.1.3

I 1 o
TLM Table Manager 7.2

I 1F o
Format Telemetry 7.2.1

I _ o
TLM Transit 7.2.2

I 1 0
Control Telemetry Format 7.3.1

I 11 o

Proc.
Laq (ms)

SUM:
4O

F

Margined
Throuqhput

Required
525,000
525,000

0

0

G
Ins/Exec

max;
21,000

0

0

H
Instant

Thruput (IPS)

525,000
525,000

0

0

0 0 0

0 1 0 0 0

0 1 0 0 0

00 0 i

0 1 0 0 0

0 0

& Telemetry ProcessingTable 2-7. Command

A U U U _ p

Frame Thr.uput
Rate (HZ) (IPS)

Margin Prec. Margined na/Exec Instant
Lag (ms) Thruput T i_0pdt _lPS)- - -

Required
Range _;afety.&...Deetruct 8 SUM: 5,400 " max: " 1.B00,O00

_i] - 1 j 3,600_0.5 3_ ______OQ.__...... 5,.400 i.__J_800,O00
Band Transpond 8.1

i _i 0 0 i _ o
Receive-& Decode signal 8.1.1

Self'-Telst"& timing 8_1:_.'" . 0 ..0.....
!

I.... i] o o
Transmit C-Band $|gnal 8.1:3
SS ii[iiSSSS !IUSIIII S--0"-[-0

C,_mmand Receive _ Decode 8.2
L II o[o 1 o

0 Oo 0

1 0 0 0

.......Y...............0O............................i_

0 "

Destruct Command I_0glc8.2.1
| lj 0[0 [..............1 i 0 0 0'

5electPo_ver sodrce 8_2_2 .. I ! I_............... L. [...................
1 II O.I ,0I o - o o

i i ° ! ioi 0::I I I o 0 1 -_ - - ----_-_------:--_
Destruct System Control 8,3!..... '

Safe & Arm ISDS 8.3.1
I 1 0 '0 1 00 • _0

Vedf_;/-Loop Integrity 8.3,2

/ 1]. 0 0 1 0 0 0
ISDS Redundancy Mar ager 8.3,_3................ '" _"

! _ o o, i o o 0
Initiate Destruct 8.3.4

[........ i I ---O--" _ i -I............0 - "0"........................-t_....

Table 2-8. Range Safety & Destruct

2-11

1
2
3
4
5

A B C D E F G H
Frame Thruput Margin Proc. Maralned !lne/Exec Instant

Rate (Hz) (IPS) La_(ma) Thrupt Thruput (IPS)
Required

Programmable Pay!oad I/F 9 ..
I _ 1} o o I o

Table 2-9. Programmable Payload I/F

2.2.1.2 Derived Requirements

The ALS throughput requirements discussed in the previous section were derived

by Martin Marietta using certain assumptions that can have a substantial impact on the ALS

avionics architecture and the number of processors and other hardware required to meet the

performance requirements. In particular, the overheads for using Ada appeared too high in

comparison with the CSDL experience with the new Ada compilers and Run Time

Systems. As the Ada compilers have matured over the last few years, they have become

much more efficient in generating code. Our recent experience indicates that newer Ada

compilers generate code that is almost as good in code density and execution time as other

high level language compilers such as C [22]. This appears to be true for a wide variety of

programs including computationally intensive programs and operating system oriented

programs.

In order to quantify the overheads of using Ada compared to an assembly language,

and compare this overhead with the factor of 6 assumed by MM, a typical ALS application

algorithm, the Lateral Acceleration Sub-System filter function (LASS), was chosen as a

benchmark. This function had already been coded by MM in Ada. It had also been coded

by CSDL in Ada using the CASE tool. Both versions were compiled with the Verdix 5.5

cross compiler and the XD Ada cross compiler produced by Systems Designers Software,

Inc. and Digital Equipment Corporation. They were compiled with and without Ada

constraint/range checking, thus producing a total of 8 versions. The Verdix 5.5 compiler is

currently being used by CSDL on AIPS and a number of other projects. The XD Ada

compiler is a newer, much more efficient compiler that has been undergoing Beta testing at

CSDL for the past few months.

The eight versions of the LASS filter were run on the AIPS Fault Tolerant

Processor (FTP) that was built for NASA Johnson Space Center (JSC) to obtain

comparative execution times. The object codes of the eight versions were also analyzed to

produce instruction counts. Figures 2-2 and 2-3 summarize the number of instructions and

the execution times for the eight versions of the LASS filter function. Ideally, the

execution time should be compared to the execution time of LASS function coded in an

assembly language to determine the overhead of using Ada. However, the MM-supplied

2-12

requirementsdonot containexecutiontimesof functions. They consist of an estimate of

the number of instructions for each function. These estimates were arrived at by examining

the function flow charts and using the following assumptions:

1. Time for 1 add -- time for 2 instructions.

2. Time for 1 multiply - time for 4 instructions.

3. Time for 1 divide = time for 8 instructions.

4. Time for high order language (Ada) overhead (addressing, pragrnas, etc.) --

sum instructions for adds, multiplies and divides (#1+#2+#3) and multiply sum

by 6.

Since the goal of the benchmarking was to calibrate the MM-supplied requirements

(rather than to compare Ada to an assembly language on an absolute basis), we used the

MM assumptions to compute the number of "assembly language" instructions for the LASS

function. The total number of instructions, using the flow charts and the assumptions 1, 2,

and 3, was calculated to be 74. This was multiplied by 6 (assumption # 4) to arrive at 444.

This number can now be compared to the instruction counts in Figures 2-2 and 2-3.

H/W: AIPS Engineering Model JSC FTP 68020/68881/15.7 MHz

Compiler Num of Instr per Iter Time per Iter

Verdix 5.5 w checks

Verdix 5.5 w/o checks

XD Ada w checks

XD Ada w/o checks

415 1.09 msec.

341 0.85 msec.

160 0.60 msec.

115 0.43 msec.

Figure 2-2. LASS (MM Coded) Benchmark Results

H/W: AIPS Engineering Model JSC FTP 68020/68881/15.7 MHz

Compiler Num of Instr per Iter Time per Iter

Verdix 5.5 w checks

Verdix 5.5 w/o checks

XD Ada w check

XD Ada w/o checks

277 1.22 msec.

247 1.14 msec.

109 0.54 msec.

99 0.51 msec.

Figure 2-3. LASS (CSDL Coded) Benchmark Results

2-13

The following conclusions can be drawn from these benchmarks:

1. The XD Ada compiler consistently produces fewer instructions than the Verdix

5.5. compiler. The ratio varies from 2.5 to 3 depending on whether or not range checks

are turned on.

2. The code produced by the XD Ada compiler consistently outperforms the Verdix

produced code. The ratio approximately varies from 1.8 to 2.2. The code density and

speed ratios between the two compilers are consistent with other benchmarks performed by

CSDL.

3. The manually coded MM version produces more instructions than the CASE but

generally executes faster. The CASE produced version passes many parameters with each

iteration and the instruction used to push a parameter onto the stack apparently takes a

longer time than the average instruction. Other reasons for this disparity have not been

analyzed at this time.

4. Turning the range checks on or off has a much greater impact both in the

number of instructions as well as execution time on the manually coded version than on the

CASE produced version. This is due to the fact that CASE uses predefined functions for

certain floating point operations which are not affected by turning the checks on or off.

Given the superior performance of the XD Ada compiler which represents state of

the art in Ada compiler technology, it will be assumed here that the ALS will either utilize

this compiler or an advanced Ada compiler of similar performance. The following

conclusions are based on this assumption.

5. XD Acla compiler generates 99 to 160 instructions for the LASS filter compared

to 74 counted in the flowchart, resulting in an overhead factor of 1.34 to 2.16. (As pointed

out earlier, the number of instructions would be 444 using the MM overhead factor of 6

which would have been fairly representative of the earlier Aria compilers.) The ALS

throughput requirements have been recomputed in the next section using an Ada overhead

factor of 2.2 as mutually agreed to by MM and CSDL.

6. Martin Marietta used a further multiplicative factor of 2.3 to account for the

"logical and environmental overhead" of scheduling and dispatching a task. This overhead

is actually not dependent on the number of instructions in a given task. Instead, the

overhead is a fixed number of instructions required for each iteration of the task, i.e. each

context switch. The number of instructions for scheduling and dispatching a periodic task

was measured using the Verdix 5.5 compiler and run time system (RTS). A periodic task

dispatch takes 820 microseconds and was equal to 830 instructions. The instructions used

for the context switch take less time (less than 1 microsecond per instruction) than typical

computation intensive instructions. These numbers are currently not available for the XD

2-14

Ada compiler. However,basedon thecodeproducedby the two compilersand thefact
thattheXD Ada run time systemis written in anassemblylanguagewhile theVerdix run
time systemis written in Ada, our estimateis that approximately500 extra instructions
would be required for eachiteration of eachtask. MM feels that there is still some
overheadthatis proportionalto tasksizeanda proportionalfactorof 1.5in combination
with afixed overheadof 250instructionsper taskper iterationshouldbeused. TheALS
requirementshavebeenrecomputedin thenextsectionusingthesetwofactors.

A new setof ALS throughput requirements have been derived using the findings

reported in the previous section. Using an Ada overhead of 2.2 rather than 6, and a fixed

scheduling overhead of 250 instructions per task per iteration in combination with a

proportional overhead of 1.5 rather than a factor of 2.3, the new ALS requirements are

summarized in Tables 2-10 to 2-18. The following conclusions can be drawn from the

modified requirements.

The reduced overheads of an advanced Ada compiler make the modified throughput

requirements obviously much smaller than the initial requirements provided by MM.

However, the effect of changing the scheduling overhead from one that is proportional to

the task size to one that is dependent on the task iteration rate is not so obvious. The

dispatch overhead for high frequency tasks is quite high: for example 25,000 instructions

per second for a 100 Hz task. On the other hand, the requirements for large tasks are

substantially reduced: for example, the Kalman filter function requirement (including

margins) is reduced from 3.5 MIPS to .84 MIPS.

The net effect of these changes is that the overall ALS throughput requirements

(including margins) for non-propulsion functions are reduced from about 26 MIPS to about

8.8 MIPS. Furthermore, the maximum instantaneous throughput (throughput required to

perform the most demanding indivisible task) for non-propulsion functions is reduced from

about 10.7 MIPS to about 3 MIPS. For propulsion control functions, the total throughput

requirement reduces from 20 MIPS to about 4.8 MIPS and the maximum instantaneous

throughput requirement reduces from 26.7 MIPS to about 6.4 MIPS.

The derived requirements were used to synthesize the ALS avionics architecture as

discussed in Section 4.

2.2.2 I/O and Interfunction Communication Requirements

To obtain estimates of the Input/Output and Interfunction communication require-

ments, the ALS requirements Hypercard stacks provided by Martin Marietta [3, 4] were

examined. The communication requirements contained in these documents are less

complete than the computational requirements discussed above. For functions for which

relevant communication requirements were absent from the Hypercard stacks but which

were known to possess significant communications needs, other preliminary requirements

documents were consulted [5, 6].

2-15

1

2

3
4

5
6

7 Timing & S;(uance 1.1.2
I"8] 1,,_ 30,000 32.174

9 IPS Self-Test "1.1.3

1 o I 11 40,000 981_
1 1 IPS Fault Oetect & M,qmt 1.1.4

2 I 251 50.0001 18.207
3 Subs)'atem Status Monitor 1.1.S

1 4 I 25_ 38,000 15,337

1 5 Mission Phase Sequence Gen 1.1.6

1 6 I 1°01 s,ooo 26,196
1 7 Data Reportin_ 1.1.7

1 6 I 501 20.000 17,283
1 9 Nav/IMU 1.2 I
_ 0 IMU proceseln q 1.2,1
2 1 i 100| 3,2001000 790,217

:_ 2 _PS Processing 1.2.2
23 _ 100 3,200,000 790,217

24 Error Compensation 1.2.3
2 5 I 300_ 25,000 80,978

2 6 Kalman Filtering 1.2.4

2 7 I 251 3,500.000 843,207
2 8 Nay _[xe¢ 1.2.5
2 9 I 1 O0 1,000 25,239

30 FDI 1.2.6

3 1 I 50 132,000 44,065

3 2 Sending Processing 1.2.7

3 3 100| 1.280 25,306
3 4 Adl:tve Gdnce 1.3

35 Twc,obOdy Linear Guidance 1.3.1

3 6 50J 37,500 21,467

37 Non-I, inear Trpl ShapInq _T3.2

3 8 I 11 3,300,000 789,380

3 9 Contirlg_q_y Control 1.3.3
4 0 _ 1 1,000 489

4 1 Adaptive Control 1.4

4 2 Model Reference Adaptive Controller

4 3 I 501 505,100: 133,285

4 4 Classical Autoptlot 1.4.2

4 s I 501 542r3501 1421192
4 6 System Identification 1.4.3
4 7 I 251 " 2.144.525 519.071

A I B C D E r_ F GFrame MM Thruput Aod ThrupulMar(li Proc. Margined

Rate (Hz) (IPS) (IPS) Lao (msThrouqhput

Central Control and Processing 1 Required

Exec 1.1 J sum: 5,841,958
Central Control 1.1.1

! 1001 30,000 32,174 0.5 8 48,261

H I

Ins/Exec Instant

Thruput (IP',

Required
max: 3.036,730

483 60.326

386 482,6090.2 0.8 38,609

1 _0 19.630 19.630 98.152

1 10i 36.413 1.457 145.652

0.5 10! 23,005 920 92,022

5 31,435 314 62,8700.2

1 34.565 691 691,304

1 0 948=261 _)=483 948,2610.2

0.2

0.5

0.5

1

0.5

0.2

f O 948,261 9,483 948,261

1 121,467 405 404,891

36 1,264,810 50.592 1,405.344

6 50,478 505 84=130

0.5 66=098 1,322 2,643,913

0.1 30.367 304 3,036,730

15 25,761 515 34,348

960 947,257 9471257 986,726

1 978 978 978,261

10 166.606 3,332 333,2i2

T

10 2131289 4.266 426,577

10 648.839 25.954 2.595.356

0.2

0.2

1

i.4.1

0.25

0.5

0,25

20.630

270,087

269,130

1,956,522

4 8 System RM 1.5 (Includes CS,.D.L RM; task throuclhDuts approximated as 50KIPS/3)

4 9 Fault Resoons_ 1.5.1
50 I 25 17,0001 10=315 1 40 20,630 825 20,630
5 1 Fault Determine & Isolate 1.5.2

5 2 | 25J 17,0001 10,315 1 40 20,630 825 20.630

5 3 Configuration Manager 1.5.3
54 | 251 17,0001 10,315 1 40 20,630 825
5 5 Gen Oiscretea 1.6

5 6 Validate Commands 1.6.1

7 J 50 4,900 13,504 1 2 27,009 540
8 Update Outputs 1.6. 2

5 9 I 50 4T000 13,457 1 2 26,913 538

6 0 Discrete Error Handling 1.6.3

s I I 1/ 1.ooo I 489 1 o.5 978 978
6 2 Det G&C Wnd Dltal 1.7 (no task throu hputs available

63 I 1 | 29,000 I 7,185 0.5 20 10,777 10.777

6 4 Load Relief Algorithm 1.7.1

65 I 100[ol 25=000 0 10 25,000 250 25,000
6 6 Estimate Fluctuation Stats 1.7.2

67] 100] o] _s, ooo 0 10 25,000 250

Table 2-10. Central Control & Processing (Modified)

25,000

2-16

A B C D E

1 Frame VIM ThruputMod Thruput Margin

2 Rate IHz) lIPS) lIPS1
3 Winds Ahead Determination 2

4 I
6 I 1 520_000 124,598

6 Manacje Measurement Resources 2.1

7 I I I 100 I 274
8 Lidar Cal and Checkout 2.1.1

9 I 11 o 25o
1 0 Lldar BITE 2.1.:_

1 1 I 251 6,000 7.685
1 2 Lldar Fault Handling 2.1.3

1 3 I 251 0 6,250
1 4 Lidar Health Monltorln,q 2.1.4

I 6 I 601 3,000 13.217
I 6 Compute Wlnd Profile 2.2
17 I I
1 8 Lldar mode Control 2.2.1

I 8 I 11 0 _5o
2 0 Winds Measurement Fitting 2.2.2

2 1 I I I 620.000 124,598
2 2 Vibration Compensation 2.2.3

2 3 I 501 51000 13_696

2 4 Bending Compensation 2.2.4

2 6 I 6o I 1o.ooo 14.691
2 6 Control Veloclmeter 2.3

2 7 I 100 I 2_000 25,478

2 8 Redundant Lldar Conflquratlon Control 2.3.1

29 I lOOl o 25.000
3 0 Lldet Power Control 2.3.2

3 1] 251 0 6,250
3 2 Receive and Proces S Winds Info 2.4

3 3 I 50 1 soo 12,691
34 Detection 2.4.1

3 6 I 11 0 250
3 6 Pulse Deconvolutlon +_,r4,r_

3 7 I 11 o 250
38 Rankle Determination 2.4.3

3 9 I 11 o 250

4 0 Doppler Frequ4ncy Estimation 2.4.4
41 / 1 ol 250
4 2 Data Collection & Formatting 2.4.5

4 3 I 11 6°°1 393
4 4 Check Range w Exp Values 2.4.6
4 6 l I _POQI

0.5

I

F

Proc.

Lag (ms)

sum:
500

I I

0.5 1

0 1

0.5 1

1 I _

0.2 95(_

0.5 1

1 5

I I

0 10

0 40

I 1

1 1

1 1

1 1

1 1

1 10

o_1 5

G H I

Margined InslExec Instant

Throughput Thruput liPS

Required Reclulred
348.823 max: 507.652

500 500 5001000

11,527 461 461,087

6,250 250 250,000

19,826 397 396,522

500 590 5oo,ooo

149,517 149,517 157,387

20_543 411 410_870

29,783 596 119,130

501967 510

25,000 250 25,000

6,250! 250 6j250

25,383 508 507,652

500 500 500,000

500 500 500,000

500 500 500,000

500 500 500,000

787 787 78,696

0 0 0

Table 2-11. Winds Ahead Determination (Modified)

2-17 "

rror Det 3.2

Mission Power Profile 3.4.2

z= I prFo¢"Margin I

!Lag (ms]
I

sum:
0.5 i 2

"1

lJ 1

1] 1

n 3.2 lJ

I

1

11 1

11 1

' tl
11 1

11 1

11 1

11 ' 1

11 1
" 11 1

11 1

G
Mar(lined
ThrOUcjhpUl

Hequirea
1_.o25
11._5

5OO

500

ROn

Rtln

Rnn

ROD

500

500

H
In$11=xec

max;
441

500

500

500

5OO

5OO

50O

_o

I
instant

tar.put (ZPS/
Heqmreo

SOQ,QOO
_o_Ro0

EO0_O00

sooooo

5001000 i

500,000 i

5qO,OOO

5001000

_OQi90o

RO0 5_ 500_000

5O0 500

5OO

50O

500

ROn

.ROG3

_oq

500.000

500.000

500.000

500.000

Table 2-12. Vehicle Power System Management (Modified)

2-18 "

A B U D I: I-
1 Frame MM Thru /lod Thru Margin Proc.
2 Rate (Hz) (IPS) (IPS) Laa (ms

4 Steering & Staging Control 4 sum:
I 501 55,0001 _,5,652 0.5 15

6 Provide Steerlnq Slqnals 4.1

7 I 11 4q.1.1 250 o 1U Identity Chan.qed Cards
9_ I 11 q 250 0 1
]u Corn (;md 1;oPrev & I_lmlt Rate 4A.2
11 I 11 q 250 o 1
12 Gen New Steerinq Signal 4.1.3

1 q 250 O 1
13 I Steerlnal14 Report Cmd Error 4.1.4
15 I 11 q 250 0 1
16 Validate Steering Cmd Response 4.1.5
17 I 11 _ 25o u 1
18 Select Outputs and Verlt Cmds 4.2
1 ,1 sol 5,000 13.698 1 4
20 Validate Discretes 4.2.1
21 I O.4 I r000 339 1

2322A_tlvate :_la_lng 4.3 C 250 0 1
24 LFU Control & Monitor 4.3.1

25 I 11 c zbu o 1
25 Verl_ & Sequence Power 4.3.2
Z ! I 11 1 Zbu U 1
26 OrdnanceBIT4.3.3
29 I 11 6,000 1,685 0.5i ."
30 PaUlt nanaling 4._,4
31]1

L/UF 1 250 Ol 132 Redundancy Contro 4.3.5
33 I 11 LI 250 _, 1
34 ACtivate Ulscrete uevlces 4.4
;]_ I 11 q 250 r, 1
:]6 _,rov_ae u_screTeuutputs 4.4._
;_7 I 11 t 25oi _ 1
38 RCS Control 4.5
39 I 11 _ 250 (3 1
40 !HU_ ,-rror %ieneraze 4.b._

41 ilj/R 11 t. Z',.5O '.j 142 ase i-,lane uontrol 4.b.
43 | 11 C 250 (3 1
44 HC3 uommana uenerator 4._.;_

45 I 11 q O 1

(3 H I
Margined Ins/Exec Instant

Thruput 1 hnJput tiPS)
l:lequlred plequired

13,075 max: 505,435
38,478 770 51 R04

250 250 250r000

250 250 250r000

250 250 250;000

250 250 250_000

250 250 250,000

250 250 250,000

27.391 548 136.957

7 I _96 4_ -q13

_n _n 250.000

_n p_n 250,000

250 250 250.239

_527 _527 505,435

250 250 250,239

2501 250 #50 onO

250i 250 250,000

250 250 250,000

250 250 _50,000

z_u zbo 250,000

250 250 250_000

0 0

Table 2-13. Steering & Staging Control (Modified)

2-19

A B U U

_'.rame MM. Thru Mod.T.hru1

Hate (HZ) tiPS) (IPS)F_nsor Processlnq 5

.L: '54t_P I & Cat_orlza25I 636,000Senior Data158'3375.1

7 ! 25.i ..12,500 9,239 0.,. 34 . .
U Identify.Format 5.1.1
9 ... I . 501 !30,000 43,582.- O.E..... 4C...... 65380 1-308i 32,690_

7,446

250

34, n:>_

,250

i:.1 P (3 I1 I
MaminJ Prec. Mamlned Ina/Exe¢ Instant

- Laq (ms) Th_put l_runut flPS_
Hequlred

SUM: 753,335 . Max: 516,685'
0.5 34 237505 9r50(]

1

1

0

1

0

0

1E 413348 8_267 J 51_6._6_[5__I

4(] 14891 ! 596 ' _!4,89!__i

1 250 250 250r239

5 68043 1,361 272,174

1 250 250 250,000 .

250 250 250, .000.......

250 "'.....2...5..0. "950,_

250 250 250t000

2,.5,0 250 250,000

250 iiii 250.00__0____,

370.087

250,000

250 ,,,,250.000

250] 250.000 _

41I 82J 74

10 Filter & Store 5.1.2
111 l 501 8 2.000 206.674

12 Format-A Convert & Store 5.1.3
13 1251 5,()00 i
14 Format-B Corn err & StemS.1.4
1,5 [1 1
15 T,vne procaaslna __2
17 -'1 ..50J- 9o.0oo
1U Comoam With Limits 5.2.1
19 i 1 U
2g Avemqing & Voting 5,'2.2

21 _1 o"22" ,ram _.9.3
23 J . 1!. 01

,,,,,

24 Count Limits Etrots _.2_4
25 ! 1 o
25 _ect..Redund zncy 5,2,_

27 C, lllbratlon &/falldation 5,_28
Z_ II, I 25 | 112.50(2
30 Datermine' (_r|ticality 5.3,1
_ I 1}i 0
3Z Ma,,naqe Recovery =';,3:2
33 l I ! 0
34 Sensor Fault Tolerance 5.4.3
35 '"| 751 308,500

36 Limit Checka 5.4.1
37 I I i o
;_Q C-onalatencv Chq_cka 5,4,2_ I
39 ! Xl u
40 Vat!detlon Error Report 5.4.2
41 11 -1 l [' ' ' 0 I

42 Error & Failure Reporting 5.5
43 | Ill 1¢1]_

250

250

1

o

_bO _ 'I 0 1

Z'._O 0 I

z_u 0 1 250

z_o q t _n _o

9Z,'.SZZ i 0._ # 138783 1.850

Z=U O ll l f*' l

250 250

z_u U 7 250

2500 1 :250

Z/_ j I I 0_5 _ I :411

Table 2-14. Sensor Processing (Modified)

2-20

AI B
1 I Frame
z I Haze (.z)
;,t Proou/s/on Con!

" 1
o Manaqe Propul,,

u t,ro _ntrllr ilml
w I !

10 Prod MemoryM(
11 I 1
12 Pmo Fault Mam_

13 1 -;
14 Update Data Ta!
15 I ;
1D Hepon P.nglne

II Ja l]o Up m IaOleO.,

ZU I_rocess _;omm£

Z1 I 1
zz MOnlzor ano ver

23 I Y
24 compute Valve
25 ?
zo i:nglne Control
27 I
28 UDcate Actuator

30 Compare Actuat
31 I I
_z Process Propuls
`t`t
`t4 _en_or ua[a _ce

,Io L i,to Heo n _ensor I-'
37 I 1
38 UmJl Monitor &
39 I 1
40 uensor Failure 1-

41 I t

C D E F
MM Thrunut Mod Thruput Margin Pro¢.

{IPS) UI"::)) IJ_ {ms)
tel 6

_UM:

10.00(7.000 _, 403,804 1 1:_
ion end Faull Tolerance 6.

n_ & bxec oOJ.,--. 250 0 ,
U Z.,_U U 1

mt 6.1.2
0 250 0 t

6.1.3

0 2RO O t
les & Report qi.2

0 25O 0 I
:atus O.Z.1

0 z50 u 1

u 250 u 1
qas O.`t

u 250 u 1
ry uommano I o._.]

O 250 O 1
'osltion 6.4

0 Z50 O t
oops O+.l

0 250 0 1
POSItiOnS 6.4.2

u I zou u
:)r Model 6.4.3

O | 2bO O I
io n Sensors 6.{i

U Z,_U U 1

ling o.o.1
6 e:ou u i

:ocess and Q Jal e.O.Z
o I z_o o t

;allure petect 6_5.3
0 I 250 0 1

andler 6.5.4

o l z50 o 7

G
Margined

!nrougnpul
Required

41801t609
4.807.809

MaX:

1R_

250 ZbO

EDU Z..')U

250 250

2,50 2bO

250 250

ZDV Z.._U

ZbU Z.bU

.*_ Z._U

26U _bO

2bU

25O

250

250

ZDU ZOU

250 250

ZDU ZOU

¢OU _OU

250

2fi01

250

250

2_0

250

I
Ins_nt

Inruput (l_)

61410 t 145
, 41(,1/4_

25oro00

Z.._ Uf UU U

250, 000

_5o,00o

25o,oo0

250t000

2501000

:_sn o00

z50,ooo

250,000

25o, ooo

_PBD_ODO

250,o0o

250,000

Z_)U_UUU

250,000

250.000

2bO.OOO

Table 2-15. Propulsion Control (Modified)

2-21 "

AI S C D S I F G H I
I Frame MM ThruputMod ThrupuMarglnl Proc. Msrcjlned nslExec Instant

Leg (m., rhroughpul Thruput

Required { I P S)

1

2 Rate (Hz (IPS) (iPS)

3 !
4 Command & TLM Processing 7 SUM: 134,918 max: 250,000
5 I _._ I 350.000 89.946 0.5 40 134.91_ _5,,_97 1_4,9t8

6 Decode &)rocess Com_land Date 7.1

7 I 1 0 250 0 1 :_50 250 250,000

8 Decode & Verify Commands 7.1.1

9 ! I 0 250 0 I 250 250 250r000
1 0 Validate Ground Date 7.1.2

1 1 [1 0 250 0 1 250 250 250;000

1 2 Command Acceptance 7.1.3

1 3 I 1 0 250 0 I 250 250 250r000

1 4 TLM Table Manager 7.;

1 5 ! 1 0 250 0 1 250 250 250r000

I 6 Format Telemetry 7.2.1
1 7 I 1 I 0 250 0 I 250 250 250.000

1 8 TLM Transit 7.2.2

19 I I 0 250 0 1 ;_50 250 250,000

2 0 Control Telemetry Format 7.3.1

2 1] 1] 0 I 250 0 I 250 250 250,000

Table 2-16. Command & TLM Processing (Modified)

A e c D S F O H I I
1 Frame MM Thruput _lod Thrupu! MarglnlProc. i Mar_llned InslExec_ Instant
2 Rate (Hz) 4, tiPS) (IPS) Lap (ms' Thruput Thruout (IPSI
3 Required
4 Range Safety, & DestruCt" B " SUM: [!_868 max: 555.435
5J.. I | 3.600 I. 111 0'.5 3 1666 1.666 555.435
6 Band Transpond 8.1
7 1 T | 0 250
8 Receive & Decode Signal 8.1.1

9 _, _ ! O , _o
1 0 Self-Test & timing 8.1.2
11 I. ! _ 0 250
1 2 Transmit C-Band Signal 8.1.:
I 3 I I I o z5o
1 4 Command Receive & Decode 8.
1 S] 1 I 0 250
1 6 DeStruCt Command Logic 8.2/
1 7 | i I o 250
1 8 Select Power Source 8.2.2

1 9 _ 1 I 0 | 250
2 0 Sequece Destruct Signals 8.2. 3
21 J 1 | 0 250

2 2 Destruct System .Control 8.3
23] I I 0. 250
2 4 Safe & Arm ISDS 8,3.1
2 s ! I [0 25o
26 Verify Loop Integrity 8.3.2

2 7 l !i_ii 0 250
ISDS Redundancy Manager 8,:;.3

2 g I I ! o 250
3 0 Initiate Destruct 8.3.4
31 _ 1 I o 250

0 1 250 RSO 2,_5,ooo

o ! _50 _50 _5o,0o0

o _ 250 aso, 25o,ooo

0 1

0 I

250 250 250,000

250 250 250,000

250 250 250,0.00

250 250 250,000

0 I

0 1

0 _ 250 250 250.000

"'0 I 250 250 25_':00'_'

o , 2_o ,_ 250_so._,op.£

0 1 250 250 250,000

o 1 250 250 250,b0_

0 1 250 250 __250_000

Table 2-17. Range Safety & Destruct (Modified)

.. 2-22

A B (3 I D I_
1 frame MM Inrupuz iMOa Inruput Mar_,n
2 Rate (Hz) (tPS) OPS) J
J

.t _'roclrJ'irnrnaz)ie va_ ioao in- u '
..... ,, I'i] o 25o o

P
I.'roc.

[-aR (ms)

H I
Mar ineo :ns/r.xe¢

Th_pt ' msmnz"' Thr.p.t _S)
Hequlreo

250 250

Table 2-18. Programmable Payload I/F (Modified)

Based on the throughput estimates discussed above it was concluded that _IIALS

functions except propulsion control can be performed by one FTP. (See Section 4.1 for a

more detailed discussion). For brevity we denote this FTP the "Core FTP." According to

[5] the propulsion controllers (also assumed to be FTPs) are assumed to reside at the

engines; denote these as the "Propulsion FTPs." This functional partitioning guided the

interpretation of the communication requirements. Specifically, in analyzing the

communication requirements only the communications between the Core FTP and the

vehicle sensors and actuators, the Core FTP and the Propulsion FTPs, and the Propulsion

FTPs and the propulsion sensors and actuators were considered. Moreover, functions

which did not possess communications requirements or had numerically insignificant

requirements were excluded from this analysis.

Determination of temporal load profiles requires detailed knowledge of task and

communication request scheduling, and this information is currently unavailable.

Therefore the figures obtained from the requirements are at best average figures and

primarily of use only in performing a rough sizing of the communications media, and to

predict the average utilization of the media.

Using the assumptions and simplifications noted above, the following

communication requirements were determined.

2.2.2.1 Core FTP I/O

This category comprises input from the vehicle's sensors to the Core FTP and

output from the Core FTP to the vehicle's actuators. This I/O would take place over one

or more AIPS I/O Networks or through memory-mapped I/O devices resident on the Core
FTP's Shared or Private Bus.

Winds Information: "The winds information signal represents the echo returns

from the electromagnetic probe signals emanated from the winds measurement signal. It

consists of sixty points, obtained every sixth of a second [4]." Each sample is 16 bits.

The average bandwidth required for this I/O function is thus

60 points/sample* 16 bits/point*60 samples/see = 56,470 bits/sec

Sensor Signals: This communication path consists of "...2500 non flight critical

sensors and 600 flight critical sensors, or 3100 sensors. We assume most are sampled at

50 Hz rate [4]." Each sample is 16 bits. We assume that the non flight critical sensors are

2-23

simplex and the flight critical sensors arc duplex (fail-operational), resulting in 2500 +

1200 = 3700 sensor reads per iteration. The resultant average bandwidth required is

3700 points/sample * 16 bits/point * 50 samples/see = 2,960,000 bits/see

Ground Downlink: "The ground downlink contains the telemetry stream which

is normally routed through the radio link [4]." The average bandwidth required for this

function is given directly by the requirements to be

8_00,000bits/see

Steering Signals: "Two actuator signals of 16 bits each are sent to up to 17

engines...(at a) 25 Hz rate [4]." The bandwidth required for this communication is

2 signals/engine * 17 engines * 16 bits/signals * 25 outputs/see = 13,600 bits/sec

The aggregate average ALS Core FTP I/O bandwidth requirement is 11,160,340

bits/see.

2.2.2.2 Core FTP . Propulsion FTP Communications

This category comprises communication between the Core FTP and the Propulsion

FTP(s). This communication would most likely take place over the InterComputer Net-

worL

Propulsion Commands: "The propulsion interface is fairly simple. Command

examples: Engine Preparation, Engine Start, Engine BIT, Engine Shutdown. Assume

there (are) at most 16 commands (resulting an a 4-bit command word) [4]." The output

rate is 50 Hz. The bandwidth required for this function is

1 command/engine * 17 engines * 4 bits/command * 50 outputs/see = 3,400 bits/see

Propulsion Status: This signal is not described in [4] but is referenced in an

earlier informal requirements document and corroborated via communication with Martin

Marietta. It represents the propulsion control transmitting propulsion status to the

command and telemetry functions, and is of sufficient magnitude to be considered here.

This signal requires a bandwidth of

10,000,000 bits/sec

Total Engine Status: The propulsion control periodically reports the engine

status to the Central Control and Telemetry functions [4]. Each engine possesses 100 bits

of status information and the output is scheduled at a 25 Hz rate, resulting in a bandwidth

of

2-24

100bits/engine* 17 engines * 25 outputs/see = 42,500 bits/see

It is not known whether the Total Engine Status signal supplants the Propulsion Status sig-

nal described above.

Propulsion Memory Dump: The propulsion control function can be

commanded to dump its memory contents to the Command and Telemetry processing.

This is normally done only at prelaunch. The bandwidth requirements are given as

16,000,000 bits/see

The aggregate average bandwidth required for communication between the ALS

Core FTP and the ALS Propulsion FTP(s) is 10,045,900 bits/see during flight and

26,045,900 bits/see during prelaunch propulsion memory dumping.

2.2.2.3 Propulsion FTP I/O

The ALS Propulsion FTPs possess interfaces to the engine sensors and actuators.

This communication would take place over one or more regionally partitioned I/O Net-

works, or through memory-mapped I/O devices resident on the FTPs' Shared and/or Pri-

vate Bus.

Propulsion Sensor Signals: "There are 357 flight critical sensors, reporting at

25 and 50 Hz rates, with up to 16 bits accuracy [4]." We assume that this sensor com-

plement suffices for 17 engines. While it is suggested in [4] that the worst-case of 50 Hz

and 16 bits be used for all sensors, further conversations with Martin Marietta suggest that

approximately 20 sensors are sampled at a 1000 Hz rate. Moreover, since propulsion

sensors are flight critical, they are at least duplex, resulting in a total number of sensor

reads of 337*2 = 674 per 50 Hz sample and 20*2=40 per 1000 Hz sample. The total

bandwidth required is

674 points/sample * 16 bits/point * 50 samples/see

+

40 points/sample * 16 bits/point * 1000 samples/see = 1,179,200 bits/see

Propulsion Actuator Controls: The propulsion control transmits actuator

commands to the engines via this communication path. The requirements are obscure but

appear to comprise 4 to 5 fail-operational/fail-operational (triplex) actuators per engine,

each of which is provided with a 16-bit output value at an assumed 100 Hz rate. We

assume that each engine therefore requires 15 outputs. Under these assumptions the

bandwidth requirement is

15 actuators/engine * 17 engines * 16 bits/point * 100 samples/see = 408,000 bits/sec

• 2-25

The aggregate average ALS Propulsion FTP I/O bandwidth requirement is

1,587,200 bits/see.

2.2.2.4 Summary of I/O and Interfunction Communication Requirements

The aggregate bandwidth requirements for the three ALS categories are depicted in

Tables 2-19. Figure 2-4 depicts a functional partitioning of the ALS virtual architecture

along with the I/O and Interfunction communication bandwidth requirements.

i

Category Bandwidth. bits/see

Core FI'P I/O 11,160,340

Core FTP - Propulsion FTP Communications

prelaunch

flight

Propulsion FTP I/O

Table 2-19. Aggregate I/O and

26,045,900

10,045,900

1,587,200

Interfunction Communication Bandwidths
for ALS

2.3. RMA and Environmental Requirements

2.3.1. Reliability and Availability

The ALS mission scenario and Avionics Reliability and Availability requirements

are summarized in the following paragraphs.

The ALS mission scenario comprises four phases, each of which has different

RMA parameters. These phases are: (1) integration and checkout in a facility such as a

Vehicle Assembly Building, (2) a period of extended launch pad residence, (3) the launch

or the boost phase, and (4) on-orbit operation.

During vehicle integration the ALS avionics must be verified to be in a nonfaulty

state prior to roll out to the launch pad. This implies a degree of testability which has not

been quantified or modeled in the current study but is expected to be high because of the

characteristically high diagnosability of the AIPS Byzantine resilient approach to fault

tolerance.

The ALS remains on the pad in a condition of launch readiness for a period of up to

one week, during which no repair or maintenance of the avionics is desirable to avoid costs

associated with such actions. A "Launch with Faults" policy is assumed to be in effect

such that the ALS can be launched with avionics system faults, but only if the avionics

system is known to be capable of fault masking at the time of launch. The availability

requirement used for the current study is that the ALS avionics system must have a 95%

2-26

Winds
Information

(0.056)

1
Sensor

Signals
(2.96)

1
Steering
Signals
(0.014)

l
Ground

Downlink

(8.4O)

T
Core

FrP

Propulsion
Commands

(0.003)

Total

Engine
Status

(0.043)

Propulsion
Status

(10.0)

Propulsion
Memory

Dump
(16.00)

(Prelaunch)

Propulsion
FTPCs)

7Propulsion
Sensor

Signals
(1.179)

JPropulsion
Actuator
Controls

(0.408)

Notes"
-All bandwidth figures in Mbits/sec
-17 engines

Figure 2-4. Functional Partitioning and I/O and Interfunction
Communication Bandwidths for the ALS

2-27

availability, i.e.,mustbe fault masking with a probability of 0.95, at the end of one week

on the launch pad. The AIPS configured for the ALS consists of a number of triply or

quadruply-redundant FTPs connected by a triply or quadruply-redundant InterComputer

Network. The FTP complement is defined to be fault masking if and only if each FTP is

capable of correct operation in the presence of any single active Byzantine fault.

Representative fault masking FTP configurations arc a triplex FTP which has suffered zero

permanent faults and is not in the process of recovering from a transient fault, and a

quadruplex FTP which has suffered, detected, and masked out the channel containing any

single permanent fault (becoming in effect a fault-free triplex FTP), and is not in the

process of recovering from a transient fault. A duplex FTP is not fault masking. The

InterComputer Network is defined to be fault masking if and only if every FTP can

transmit a sufficient number of uncorrupted copies of a message to every other FTP in the

avionics suite to allow voting to generate a correct copy in the presence of any single active

Byzantine fault in the InterComputer Network. Representative fault masking

InterComputer Network configurations arc manifold and include the case of a permanent-

fault-free triplex IC Network and a quadruplex IC Network which has suffered a single

permanent Byzantine fault and successfully detected the existence of that fault, in effect

becoming a fault-free triplex IC Network.

The launch or the boost phase, i.e., the powered flight segment, is specified to be

nominally of ten minutes duration. Finally, the launch vehicle enters the desired earth

orbit. The amount of time in the orbit until the payload is positioned and released may

vary. In the worst case, it may extend to as long as 48 hours. The maximum allowable

probability of mission or vehicle loss due to avionics failure for the boost phase and the on-

orbit operations is assumed to be 10 -5 . Because launch occurs only if the avionics system

is known to be capable of masking a single fault, no single fault can cause the loss of the

ALS avionics during launch. However, during launch the avionics may fail either due to

near-coincident multiple faults occurring in a subsystem designed to tolerate only one fault

at a time, or by the exhaustion of redundant modules in a subsystem such that the

subsystem can no longer perform its computational or communication functions. An

example of the former failure mode is the occurrence of near-coincident error bursts on two

layers of a triplex InterComputer Network. An example of the latter is a series of

sequential covered faults resulting in the loss of the computational services of an FTP.

The operational environment for the ALS avionics on the launch pad, in the boost

phase, and on-orbit is radically different. Different failure rates of components must be

taken into account to model the system reliability and availability accurately. The avionics

module failure rates for the three ALS mission phases are tabulated in Section 3.

2.3.2 Maintainability

One of the assumptions regarding the operation of the ALS is that launch pad

avionics maintenance should be avoided as far as possible. However, in the 5% of the

2-28

launches(the "unavailability" requirement)theavionicswould havesuffered too many
faultson thelaunchpadto provideafault-maskingcapability,andit will becomenecessary
to performmaintenancewhile thevehicleis on thelaunchfacility. Theavionicsmustbe
packagedin relatively small unitsandthoseunitsmust be locatedin the vehicle where
removalandreplacementof failedcomponentsis facilitated.TheLine ReplaceableModule
(LRM) maintenancephilosophyadoptedby theJoint IntegratedAvionics Working Group
(JIAWG)is onealternativefor themaintenanceapproach.

The JIAWG hasdefined support systems and support techniques for vehicles

which provide easy access to the equipment locations. Much of the JIAWG maintenance

philosophy can still be used for ALS even though physical access to the ALS Line

Replaceable Units (LRUs) will probably be not as easy as in an aircraft.

The modules within the ALS LRUs can be standardized on the Standard Electronic

Module format E (SEM-E) form factor in accordance with MIL-STD-1389D. These

modules, depicted in Figure 2-5, are designed for conduction cooled applications and can

be used in extremely harsh environments (temperature, acceleration, shock and vibration).

2.3.3. Component Quality

Non-fault tolerant, single-string systems for use in space-borne systems must be

designed such that the probability of failure is sufficiently small so as to "guarantee" the

absence of failures during the useful lifetime of the avionics. This level of system integrity

is accomplished by creating and maintaining a "pedigree" for each item used in the flight

article. A system's pedigree begins with the use of components which have a traceable

history. The components are manufactured on well controlled assembly lines where each

phase of the manufacturing process is reviewed, inspected and certified. Electronic

microcircuits are manufactured, inspected and tested in accordance with MIL-STD-883C,

Class S. Discrete components such as resistors, capacitors and transistors are subject to

equally demanding manufacturing and testing controls (e.g., the JAN-TX quality controls).

The individual components are then combined to create a subassembly and

subassemblies are combined to build the components of the system where each phase of the

manufacturing and assembly process has appropriate inspection and test requirements.

The AIPS, a fault tolerant system, does not require the "pedigree" constraints

required for single-string systems. The ability to ensure the placement of a payload in the

proper orbit is achieved through the redundancy of the system. Since failures are tolerated,

individual components need not be MIL-STD-883C, Class S, or JAN-TX quality. A

comparative cost analysis, described in Section 5 of this report, shows that an effective

alternative to these components is the use of Class B and JAN-T components provided

there is a means for properly handling faults.

2-29

t'IOOCCAR CO,M_C"TOR FRAI_
IV, _T E

MIL -C-28 7_'_/92l_

POL Y£MZDE
• O.Z eq tn. CZRC'UZT AREA

CSOL DES£_N

Hoo(¢_ COt_ECTOR
TYPE .rv, _ CONTACTS

MZL -C-ZB T_I" I O I -Z

CRO$._OVER FLEX CABLE
_Z CONTACTS PER SZOE

NAV<jEA f1_919 7_0

5.88

PROTECTIVE i.EADER
CSZ_ OES_GN

6.42

_II':ll

.58

Figure 2-$. SEM-E Module

2-30

2.3.4. Radiation Hardness

A second issue for an ALS avionics suite is radiation hardness. Many space-borne

systems must be radiation hard where the definition for hardness is determined by the

purpose of the avionics. The significant difference between the ALS avionics hardness and

the hardness of an arbiwary payload is the operational lifetime of the two systems.

A payload boosted to orbit by the ALS may need to be fully operational in a

relatively high radiation environment for time periods exceeding ten years. The ALS

mission, however, is complete after it has placed the payload in a specific orbit within a

few hours after launch, typically 2 hours but in any case no more than 48 hours. Due to

the extremely short mission times, the ALS radiation hardness is not constrained by a

technology's total dose capability. The hardness of the ALS avionics will be constrained

by the Single Event Upset (SEU) rate of the logic family. The AIPS architecture can

tolerate transients caused by SEUs in the same manner that it can tolerate transient faults.

However, if the radiation environment and the corresponding SEU rate is sufficiently high

it can overwhelm the architecture's ability to tolerate these transients. Therefore,

technologies which are less susceptible to SEUs are preferable even for the AIPS building
blocks.

Upset rates for the CMOS, Bipolar and GaAs logic families have enjoyed

continuous improvements in radiation tolerance during the time period of 1985 through

1990 and it is reasonable to expect continued improvements through 1993. With the total

dose and transient dose improvements, both demonstrated and projected, the ALS avionics

will not present significant problems with radiation tolerance.

2.3.5. Power Dissipation

Operation of the ALS avionics at a launch facility can be supported by auxiliary

cooling. This cooling could be forced air or a recirculated liquid such as ethylene glycol.

The avionics must also be capable of operating without degradation after support equipment

has been withdrawn as well as during the launch and the 48 hours allocated for on-orbit

maneuvers. System cooling capacity, therefore, will not be determined by the launch pad

environment but by the ability to cool the avionics while in space.

The avionics cooling system for use in space will be comprised of one or more

"cold plates", used to mount the avionics assemblies, and the cold plates will, in turn, be

thermally connected to radiators via heat pipes. The radiators will be used to radiate the

heat dissipated by the avionics into space. The thermal capacity of these cooling systems is

severely limited and the power dissipation of the avionics must be minimized. Typical

power capacities of radiative cooling systems are two to five Watts per square foot of the

radiator area. Therefore, the avionic system power dissipation must be minimized.

Power dissipation minimization for the ALS avionics can be accomplished in three

ways. The first approach is to use a non-saturating logic family such as CMOS. Other

logic families such as bipolar are saturating logic and they are characterized by significant

2-31

powerdissipationatall frequencies of operation. The second approach is the minimization

of the clock frequency of the system. CMOS logic, while it is not a saturating logic family,

does dissipate power during state transitions. The third approach for power minimization

is the reduction of the bias voltage on the integrated circuits.

The total power dissipation of a CMOS-based system can bc estimated by the

following expression:

Pt=(Cpdfi+CLfo)V_ (I)

where

Pt = total power dissipated by the system

C_ = gate capacitance of the devices

fi= internalfrequencyof operation

CL = externalloadcapacitance

fo= frequency of outputsignals

Vcc = supply voltage

As shown in theabove expression,power dissipationisdirectly proportionaltothe

frequency of operation,both internaland external,and the squareof the supply voltage.

The LRUs fortheALS avionicsarcdescribedinSection3.5.

2.4 Requirements Conclusions

The overallALS mission scenarioand RMA requirementswere obtainedfrom the

threeALS prime contractorsvia Martin MariettaAstronauticsGroup. These included the

ALS mission phases and durations,the launch availabilityand theprobabilityof mission

success.

The ALS computational and communication requirements were obtained from

Martin MariettaAstronauticsGroup in theform of "directedcyclicgraphs depictinginter-

function data dependencies and Hypercard stacksdepictingnumerical throughput and

interfunctioncommunication requirements. The requirements were presentedas a three-

levelhierarchy.

Nine top-level functions reside at the top of the depiction hierarchy: Central Control

and Processing, Winds Ahead Determination, Vehicle Power System Management, Steer-

ing and Staging Control, Propulsion Control, Command and Telemetry Processing, Range

Safety and Destruct, and Programmable Payload Interface. Aggregate throughput estimates

were given for many of these functions. These aggregates wcrc observed to comprise an

overestimationof thecomputationalrequirementsof theirconstituentfunctions.The third

levelof the hierarchyrepresentsatomicallyschedulablecomputational tasks.Currently,

CentralControl and Processingistheonly functionforwhich level-threetaskrequirements

arcavailable.

2-32

Based on the data provided, the overall ALS throughput requirements were esti-

mated to be approximately 8.8 MIPS for non-propulsion functions and 4.8 MIPS per

engine for propulsion functions. The inter-FTP communication bandwidth requirements

were estimated to be 26 Mbits/sec (prelaunch) between the Core FTP and the Propulsion

FTP(s) (17 engines), the Core FTP I/O bandwidth requirement was estimated to be 11.2

Mbits/sec, and the Propulsion FTP(s) I/O bandwidth requirement was estimated to be

1.587 Mbits/sec (17 engines).

To more accurately estimate the throughput and bandwidth needs of the ALS

avionics system the following information is desirable for each task: task frame or iteration

rate, instructions per frame, throughput margin, processing lag, scheduling requirements

(i.e., preemptible or nonpreemptible), task execution order and/or data dependencies, and

inter-function communication requirements (i.e., bits per frame, source or destination of

data, and latency requirements). The data presented by Martin Marietta served as an impor-

tant starting point for determining the requirements of the ALS avionics. During the course

of the CSDL-Martin Marietta interaction an active dialogue was set up which would have in

time resulted in a more complete definition of a common requirements vocabulary and fa-

cilitated the acquisition of comprehensive requirements data.

2-33

2-34

3.0 AIPS ARCHITECTURE OVERVIEW

Over a period of about six years, the Draper Laboratory has been developing a fault

tolerant distributed computer system architecture suitable for advanced launch vehicles.

The overall program objective of the Advanced Information Processing System (AIPS)

Program, has been to produce the knowledgebase which will allow achievement of

validated fault tolerant distributed computer system architectures suitable for a broad range

of aerospace vehicles. The architecture that has been conceived to meet these requirements

is based on the notion of prevalidated building blocks.

The AIPS architectural attributes, rules and guidelines, and reliability and

performance models of the building blocks are described in detail in an accompanying

report "Advanced information Processing System: Design and Validation Knowledgebase"

[1]. It also contains references to the more detailed hardware and software specifications

and simulations that constitute the AIPS knowledgebase. This knowledgebase, which is

quite large, is required to synthesize a validated ALS avionics architecture. The following

subsections briefly recapitulates the AIPS virtual and physical architectures and the key

attributes of the hardware and software building blocks.

3.1 Building Blocks

AIPS is a multicomputer architecture composed of hardware and software building

blocks that can be configured according to certain design rules and guidelines to meet the

specific requirements of a given application.

The hardware building blocks, as shown in Figure 3-1, are Fault Tolerant

Processors (FTPs), Networks, and Interfaces. The FTPs are general purpose computers

which can be built in varying redundancy levels from simplex to quadruplex, using one to

four identical channels, to meet varying levels of reliability requirements. The networks are

communication media and are composed of circuit-switched nodes linked together with full

duplex links. The networks can be configured in various topologies such as a ring, braided

mesh, irregular mesh, etc. Networks can also be made redundant. Networks are used to

connect FTPs to input/output devices (these are called I/O networks) and to other FTPs

(these are called Inter-Computer or IC networks). I/O and IC networks are built out of

identical nodes and links. The interfaces are the building blocks that are used to interface a

channel of the FTP to an I/O Network, called the I/O sequencer or IOS, and to the IC

Network, called the IC Interface Sequencer or ICIS.

The software building blocks are the major software functions: local system

services, input/output system services, inter-computer system services and the system

manager. This software provides the services necessary in a traditional real time computer

such as task scheduling and dispatching, communication with sensors and actuators, etc.

The software also supplies the redundancy management services necessary in a redundant

3-1

P_ECEDING
P_._E _L,5_"._KNOT F_LMrrD

computer and the services necessary in a distributed system such as inter-function

communication across processing sites, management of distributed redundancy,

management of networks, and migration of functions between processing sites.

FAULTTOLERANT IS ple xPROCESSORS

INTERCONNEC_ONNETWORKS

MESH

INTERFACES

BRAIDED
MESH

Input/Output Interfaces

RING REDUNDANT

RINGS

Inter-Computer Interface Sequencer

Figure 3-1. AIPS Hardware Building Blocks

3.2 Virtual Architecture

One of the important and unique attributes of the AIPS and other Draper-designed

fault tolerant computers is that redundancy and its management are transparent to

applications software. Furthermore, even most of the system software is unaware of the

redundancy of the underlying hardware on which it executes. The only exceptions are

those system services that are directly responsible for managing the redundancy. (They

have to know about the existence of redundant hardware in order to manage it.) This AIPS

attribute allows almost all of the software to be developed and validated on a simplex

processor, in a software development environment familiar to most programmers and using

mature tools. We call the architecture, as it appears to the programmer, the virtual

architecture.

The AIPS virtual architecture is a conventional multicomputer architecture as shown in

Figure 3-2. It consists of a number of processing sites each containing an FTP and the

necessary external interfaces. The processing sites are linked together by an Inter-

Computer or IC bus. An FTP at any particular processing site may also have access to

varying numbers and types of I/O buses, which are separate from the IC bus. Separate

buses to carry sensor data and intercomputer data are provided because the bandwidth and

reliability requirements for these two classes of data in most realtime systems are very

different. The I/O buses may be global, regional or local in nature. I/O devices on the

global I/O bus are available to all, or at least a majority, of the AIPS FTPs. Regional buses

-2 , °

Global

I/O Bus Local I/O
Bus

bRegional
I/O Bus

FTP 1

FTP 2

FTP 3

FTP N

InterComputer
Bus

Mass Memory Bus

Mass
Memory

Figure 3-2. AIPS Virtual Architecture

connect I/O devices in a given region to the processing sites located in their vicinity. Local

buses connect an FTP to the I/O devices dedicated to that computer. Additionally, devices

may be connected directly to the internal bus of a processor and accessed as though the I/O

devices reside in the computer memory (memory mapped I/O). The regional and global

buses allow sharing of raw sensor data among functions that reside on different processing

sites, thus reducing the overall system cost. They also allow functions to be migrated

between FTPs in real time in the event of faults, damage or change in mission phase and

work load. The memory mapped I/O is used to access time critical sensors to meet

stringent transport lag requirements for real time control applications. (Transport lag is the

time elapsed from reading a set of sensors to asserting an actuator command in response to

that input).

The virtual architecture of a processing site is shown in Figure 3-3. It consists of

three sections: a computational section, an I/O section, and the resources shared between

them. The computational and I/O sections are identical, conventional processor

architectures. Each consists of a processor, memory, interval timers and memory mapped

I/O (which is unique to each processor). Although identical in hardware design, the

3-3

computationalprocessoror CP is typically devoted to application functions (such as

executing vehicle control law) while the I/O processor or the IOP is devoted to I/O

functions such as reading and validating sensors and sending out actuator commands. The

CP and lOP communicate with each other via the shared memory. Other resources shared

by both processors include a data exchange mechanism which is used to exchange and vote

data with other redundant channels in this FTP, a real time clock and interfaces to several

I/O buses and the IC bus.

3.3 Physical Architecture

The parameters that define the physical architecture include redundancy levels of

FTPs, interconnections of redundant channels in an FTP, redundancy level of sensors,

actuators and other I/O devices, cross-strapping of I/O devices to channels of FTPs and

redundancy level of their interfaces, redundancy levels of IC and I/O networks and their

physical topologies. This section highlights some of the salient points of the architecture.

Figure 3-4 shows the physical architecture of the quad redundant AIPS FTP. It is

designed strictly according to the fundamental fault tolerance theory. It complies with all

the requirements for tolerating two sequential Byzantine failures of Fault Containment

Regions (FCRs). In addition to redundancy, other features that provide hardware and

software fault tolerance include watchdog timers, processor interlocks, a privileged

operating mode, hardware and software exception handlers, and self tests. A majority of

correctly operating channels can disable all outputs of a failed channel using the processor

interlock mechanism. A channel that is failed active is thus prevented from transmitting

erroneous data or commands on I/O networks and IC networks or to local I/O devices.

Figure 3-4 also illustrates how redundant sensors are connected to the redundant

FTP channels. In this example, three redundant copies (S 1, $2, $3) of a sensor S are

attached to three of the four FTP channels. No cross-strapping of the sensors to FTP

channels is shown for simplicity, although it is possible and likely for some critical

sensors. The process by which all four FTP channels derive a congruent value of the

sensor S is as follows. Channel A reads sensor S 1 and all four channels then execute the

two-round Byzantine resilient exchange algorithm which culminates in all four channels

receiving a congruent value of S1, say V1. The process is repeated for sensors $2 and $3.

Now all four channels have the same three sensor values, say, V1, V2, and V3. To obtain

a valid sensor value V, the three sensor values must be compared and voted. However, a

bit-for-bit voting of redundant sensors is usually not possible since sensors measure real

world parameters such as pressure, temperature, angle, acceleration, etc. which are all

analog quantities. Even under no fault conditions, digital representations of redundant

sensor values differ from each other. That is, the values V1, V2, and V3 may be different

even though the sensors S 1, $2, and $3 are all operating correctly. However, since they

do represent real world physical quantifies, a number of reasonableness checks such as rate

3-4

I20 Devices !/0 D_-vie_

Legend: FTP Fsult Tolerant Proc_s¢_
CP Ccmputaticeal Processor
lOP 1/O Prcc.ct_or

IOS I/(3 S_lU_C_"
ICIS Ia_puter Interface Seque_et

I_ I/O
Bus I Bus 2

Figure 3-3. AIPS Processing Site Virtual Architecture

Sensor

®

SeNsor

®

Sensor

@

FCR 1

FCR5

INTERSTAGE

FCR6

FCR7

FCR 8

Channel A

Channel B

Channel C

Channel D

Figure 3-4. AIPS Quad Redundant Fault Tolerant Processor:

Fault Containment Regions and Interconnections

3-5

of change and minimum/maximum range of values can be used to filter out a grossly

misbehaving sensor. Mid-value select, average or mean values of the remaining sensors

can then be used to arrive at a valid sensor value in all channels. Note that the value will

also be congruent since all channels execute identical sensor redundancy management

algorithm with congruent sensor inputs.

The physical realizations of the virtual I/O and IC buses are the fault and damage

tolerant circuit-switched networks. A network consists of a number of full duplex links

that are interconnected by circuit-switched nodes. In steady state, the circuit switched

nodes route information along a fixed communication path, or "virtual bus", within the

network, without the delays which are associated with packet switched networks. Once the

virtual bus is set up within the network, the protocols and operation of the network are

similar to typical multiplex buses.

Although the network performs exactly as a bus, it is far more reliable and damage

tolerant than a linear bus. A single fault or limited damage can disable only a small fraction

of the virtual bus, typically a node or a link connecting two nodes. By reconfiguring the

network around the faulty element, a new virtual bus is constructed. The nodes are

sufficiently intelligent to recognize reconfiguration commands from the network manager

(explained in System Services Section) which is resident in one of the FTPs. The network

can also be expanded very easily by adding more nodes linked to spare ports in existing

nodes.

To maintain the fault tolerance requirements, each FTP channel receives data from

all three intercomputer network layers but can physically transmit on only one layer, as in

the AIPS Engineering Model shown in Figure 3-5. All three layers of the IC network are

used together when transmitting and receiving data. Since all channels of a triplex site are

executing the same code synchronously, all three channels (each channel transmitting on a

different layer) transmit identical messages. Thus, within some skew, the redundant layers

of the network contain the same message. This allows the receiving site to vote the three

layers, masking any failure. Although always receiving on all three layers, duplex sites can

transmit on only two of the three layers of the network, and simplex sites on only one of

the three layers. Thus, malicious failure of a channel can disrupt only one layer. An

example of such a failure is a continual broadcast (babbling) by a channel on a network or

intermittent transmissions that collide with legitimate transmissions by other FTPs on that

network layer.

For access arbitration purposes, the triplex network is treated as a single entity.

FTPs, regarrlless of their redundancy level, contend for all three layers of the network. At

the end of the contention sequence one, and only one, FTP may have access to all three

layers of the network.

3-6

The IC networks,theFTPinterfacesto thenetworks(ICISes),andthe arbitration
logic aredesignedin strict accordancewith the fault tolerancetheory [7]. The system
provideserror-maskingcapability for intercomputercommunicationbetweentriplex (or
higherredundancylevel) FTPs. An arbitraryhardwarefault, includingByzantinefaults,
anywherein thesystemcannotdisruptcommunicationbetweenFTPsof triplex or higher
redundancylevel.

3.4 System Services

Each processing site has the ability to operate autonomously, particularly for the

performance of critical functions. However, the System Services allow the coordinated use

of the entire information processing system to provide attributes superior to the more

federated systems that are typical for current aerospace vehicles.

The Local System Services in each FTP include FTP initialization, a real time operating

system, local resource allocation, FTP fault detection, isolation and reconfiguration

(FDIR), _ind local time management. The real time operating system supports task

execution management, including scheduling according to priority, time and event

occurrence, and is responsible for task dispatching, suspension and termination. It uses

the vendor-supplied Ada Run Time System (RTS), and includes additional features

required for the AIPS real time distributed operating system.

FDIR has the responsibility for detecting and isolating hardware faults in the CPs,

IOPs, and shared hardware. It is responsible for'synchronizing both groups of processors

in the redundant channels of the FTP and for disabling outputs of failed channel(s) through

interlock hardware. The CPU hardware exception handling and downmoding/upmoding

hardware in response to configuration commands from the system manager are also

performed by the FDIR function in the FTP. It is also responsible for transient hardware

fault detection and for running low priority self tests to detect latent faults. The local time

manager works in cooperation with the system time manager to keep the local real time
initialized and consistent with the universal time.

The I/O system services provide efficient and reliable communication between the

user and external devices (sensors and actuators). The I/O system services software is also

responsible for the fault detection, isolation and reconfiguration of the I/O network
hardware and the IOS.

The IC user communication service is designed along the ISO's seven layer Open

Systems Interconnect model. It provides local and distributed inter-function

communication (point to point or broadcast mode) which is transparent to the application

user. It provides synchronous and asynchronous communication, performs error detection

and source congruency on inputs, and records and reports IC network errors to the IC

network layer managers. The IC network manager is responsible for the fault detection,

isolation and reconfiguration of the inter-computer network.

3-7

[i_!_i_NE_m___!_N_U__ii_x_.:.'.'.::i:::::::+:':':_::":'_:"::::'_':::i::'::i_::":':_::"':':::':-:':-:-:............ ,7"7":::::"::::':::::::::: _:':':'__:::', "",, ,','::_:::i_'_:",7.............................:_:_:_:'::::'_::_":': ::::::=::::::;':=:"" - '"" ' "" " """-" - "-'-"" " :':':' +¸ ¸¸ •"• ""•= '¸ H H 1

I/O NETWORK

15 NODE CONFIGURATION

IIO I/O
Device Devices

FTP 4

\
/

Simplex 1

r-gin

l
Triplex

• Inter-Computer
Network

N LAYER

FTP 3 FTP 2

Figure 3-5. AIPS Engineering Model Configuration

3-8

ORIGINAL PAGE

COLOR PHOTOGRAPH

The system manager isa collectionof system levelservices:The system resource

manager allocatesmigratable functionsto FTPs. This involves the monitoring of the

varioustriggersfor functionmigration such as failureor repairof hardware components,

mission phase or workload change, operator or crew requests and timed events. The

system faultdetection,isolationand rcconfiguration(l_)IR)isresponsibleforthecollection

of statusfrom the inter-computer(IC)network managers, the I/O network managers, and

thelocalGPC redundancy managers. Itresolvesconflictinglocalfaultisolationdecisions,

isolatesunresolved faults,correlatestransientfaults,and handles processing sitefailures.

The system time manager, inconjunctionwith thelocaltime manager on each FIP, has the

job of maintainingaconsistenttirncacrossallFTPs.

3.5 Flight System Characteristics of Building Blocks

3.5.1 Functional Building Blocks

The AIPS hardware building blocks are the Fault Tolerant Processors, the

Input/Output and InterComputer Networks, and the network interfaces as shown in Figure

3-1 and are used to implement the AIPS virtual architecture and the FTP virtual architecture

shown in Figures 3-2 and 3-3, respectively. The building blocks are comprised of the

Fault Tolerant Processor Channel and the Communications Node and each of these are

composed of smaller functional elements or modules. These hardware building blocks and

the modules which make up the building blocks are described in the following paragraphs

and are based on the technology projections for the 1992-1993 time frame. Additionally,

the implementation considerations for performance, radiation hardness, power dissipation

and maintainability outlined earlier in the requirements section have been incorporated into

these building blocks.

3.5.1.1. Fault Tolerant Processor Channel

The Fault Tolerant Processor Channel is shown in Figure 3-6 and incorporates the

FTP functions identified in Figure 3-3. The channel is comprised of two Central Processor

Unit (CPU) modules, a Shared Devices module, one or more Input/Output Sequencer

(IOS) modules, one or more InterComputer Interface Sequencer (ICIS) modules, and the

Communicator and Interstage module. The channel's modules are interconnected using a
shared bus which is common to all modules in the channel. These modules are described

in Subsections 3.5.1.1.1 to 3.5.1.1.5.

Taken together, the hardware in a quad-redundant FTP will support at least a FAIL-

OP, FAIL-OP mode of operation. A quad-redundant FTP will continue to operate correctly

after two sequential, arbitrarily malicious faults in any two FCRs. Additionally, it can also

survive certain combinations of triple and quadruple FCR failures. For example, sequential

failures of two processors in different channels and their associated Interstages will be

masked. After these four failures have occurred, the FTP will continue to function

3-9

correctlyin a duplex mode (two channels still functional and voting inputs, state data and

outputs). The fifth failure can be detected with near perfect coverage resulting in FAIL-

STOP capability. Alternatively, if the operational requirements are such that it is desirable

to continue operation in a simplex mode, then the probability of FAIL-OP after the fifth

failure is directly related to the completeness of a channel's self-tests (self-test coverage).

3.5.1.1.1. Processor

The processor will be based on the MIPS, Inc., R3000 or similar performance 32-

bit RISC architecture. The nominal frequency of operation will be 40 Mttz which can

provide 12 to 18 MIPS peak performance (DAIS mix). The CPU module will have both

Random Access Memory (RAM) and Read Only Memory (ROM) and the combined total

will be between one and four megabytes. The processor module will also have

counters/timers used for support of the operating system and an interrupt controller. A

local bus interface will be provided for expansion of the ROM if the size of the operating

system and application software should require additional memory space.

!

|

Interchannel
Signals

_.,,. i

- !
!

|

Interchannel
Signals

CPU Module
1

CPU Module Shared
Devices2

--" I Channel's Shared Bus _,_ _ _ "----v

Communicator
Module

Interstage
Module

Input / Output
Sequencer

OOS)

_ _ Interchannel
"'1""1""]- Signals

!

I/b
Ne_o_

._ InterComputer _u

Interface
Sequencer (ICIS)

ter
Network

Figure 3-6. Fault Tolerant Processor Channel

The processor, executing instructions at the 40 MHz clock rate, must be provided

instructions and data at that clock rate. Memory devices with access times less than the 25

nsec clock period, however, will continue to have relatively low bit densities (16 KBits to

3-10

256 KBits per integratedcircuit) andtheir activepowerdissipationswill behigh (oneto
two Wattsper integratedcircuit). TheCPUmodule'sperformanceandpowerdissipation,
therefore,will bedeterminedby thememoryarchitectureimplementedon themodule.

While it is possibleto implementa cachememorysystem(very low accesstime
memoryimplementation)to supportthefastcycle timesof theprocessorintegratedcircuit,
therelatively smallmemoryspacerequiredin theAIPS for ALS canbeimplementedsuch
that all of the memory appearsto operateas a cache. This can be accomplishedby
implementingthe memoryarrayas64bit or 128bit wide memoryratherthan the 32bit
wordsneededby theintegratedcircuit. Forexample,if a memoryarrayis implementedas
128bits wide then the memoryarray is 64 KWords long (each Word is now 16 bytes).

When a memory read cycle is accomplished, 128 bits of data or instruction are read from

the memory and are held in a memory read buffer. Subsequent memory accesses are

checked to determine if they are from a memory location contained in the buffer. If the

access is from a location contained in the buffer then the information is provided to the

microprocessor without the penalty of another memory access. Memory write cycles must

be completed by a physical write to memory.

The other circuitry on the CPU module (timers, counters, interrupt controllers, etc.)

are common to most microprocessor based systems used in real-time control systems.

Their use in the CPU module is comparable to these other applications and to the AIPS

proof-of-concept system. No special provisions are required for these functions.

3.5.1.1.2. Shared Devices

System level support circuits to be included on this module are the channel's shared

memory (RAM), real-time clock, timers and interrupt controller.

The shared RAM in the channel is used for interprocessor communications and for

intermediate storage of a limited quantity of data. The use of this memory as a

communications area adds the derived requirement that its access time, including any

shared bus overheads, be minimized. This memory, therefore, must have access times

which are as short as possible. Unlike the memory to be implemented on the processor

module, this memory space will be subjected to random accesses to data structures located

in the shared space and no benefits can be accrued by providing a multiple word access

capability.

3.5.1.1.3. ICIS and IOS Hardware

The InterComputer Interface Sequencer (ICIS) and Input/Output Sequencer (IOS)

provide the FTP channel's interface to the redundant, fiber-optic communication paths

needed in a network of fault tolerant computers and input/output devices. While the

purposes of the IC network and the I/O network are different, the communications protocol

used in each network is identical and common hardware will be implemented to interface to

3-11

bothnetworks.A blockdiagramof thisNetworkInterfaceSequencer(NIS) modulewhich
replaces the functions of the ICIS and IOS is shown in Figure 3-7.

The communications protocol used on the networks will be based on the Fiber

Distributed Data Interface (FDDI) standard with a bit rate of 100 MegaBits per second

(MBPS) which is 50 times the 2 MBPS data rate of the AIPS engineering model network.

FDDI is normally implemented as two counter-rotating physical rings and access to the

rings is controlled using a token passing protocol as defined by IEEE-Std-802.5 (see

Figure 3-8). The implementation of the IC and I/O networks for the ALS will be a

modification of the FDDI standard where a modified Laning Poll will be used to access the

network of virtual buses rather than the FDDI token.

oiliDIIIilO.iilillO, lltlillliilllllqllilllillilllilil.llllllilillil.lllqlil_

e

INPUT L _ I_qOTOCOI..
DECODER

i
o
e

;
e

_ PROTOCOL
INPUT M DECODER

I
|

1
e

o
e

INPUT N DECODER

I ECEIVEBUFFER

TRANSMIT

BUFFER

PROTOCOL

ENCODER

RECEIVE
BUFFER

BUS
INTERFACE

e

e

RECEIVE
BUFFER *

STATE t

EXCHANGE

CHANNEL'S
INTERNAL
BUS

OUTPUTS

.TO

CHANNELS

NETWOR K INTERFA(_E (ICIS and lOS)

INPUTS
FROM

ADJACENT

CHANNELS

Figure 3-7. Network Interface Sequencer

The FDDI token consists of three bytes and its construction is specific to ring type

networks. Two bytes are the starting and ending delimiters and these are used for phase-

locked-loop (PLL) synchronization as well as marking the beginning and ending of the

token frame. The third byte is the access control byte and it contains the token bit as well

as other bits for monitor, priority and priority reservation. The monitor bit is used by the

ring monitor (a station responsible for monitoring the operation of the ring) to detect

"orphan" frames and thereby remove them from the network. The priority and priority

reservation bits are used to establish the operating level of the network and to make

"reservations" for future data transfers.

3-12

The Laning Poll supplants the FDDI token and is an extension to the poll
implementedin the AIPS engineeringmodel. The two significant modificationsto the
LaningPoll is theadditionof theQ-Bit, which is requiredfor quad-redundantprocessing
sites,andthereductionin thearbitrationtiming.

The proof-of-conceptsystemwasbuilt with triplex, dual and simplexprocessing
sitesandtheLaning Poll wasimplementedaccordingly;therewerenoprovisionsfor the
additionof quadredundantprocessingsitesin theengineeringmodel. The Q-Bit, which
precedestheT- andD-Bits, allowsaquadredundantprocessingsite to poll for control of
the network and,becausethe most significantbits aretransmittedfh'st,do soat a high
priority thanotherprocessingsiteswith lowerdegreesof redundancy.Theotherbitsof the
LaningPoll will havethesamesignificanceandwill operatelike theexistingnetwork. The
algorithmfor thepoll is:

FOR ALL i WHILE contending DO:

TRANSMIT Pi on the NETWORK

IF Pi = 1 and RECEIVED -- 1 then CONTINUE_VIE

IF Pi " 1 and RECEIVED -- 0 then VIE_WON

IF Pi --" 0 and RECEIVED -- 1 then VIE_LOST

IF Pi = 0 and RECEIVED -- 0 then CONTINUE_VIE

Figure 3-9 depicts the network arbitration timing for the AIPS engineering model

system and the timing for an advanced technology AIPS with a comparable number of

processing sites and Communications Nodes. The incorporation of technology projected to

be available in 1992 will permit an improvement in the arbitration timing in excess of one

order of magnitude. An AIPS network sized for the Advanced Launch Vehicle, however,

requires far fewer processing sites and Communications Nodes and will require even less

arbitration time. Overall, the network can be arbitrated in 1/16 th to 1/48 th the time required

for the engineering model, depending on the number of nodes, as shown by the timing

values in Figure 3-9.

The physical layer of the network is the FDDI implementation. It does not use

Manchester encoding because this form of data transmission requires frequencies which are

twice the data rate (200 MHz for 100 MBPS). The encoding scheme used at the physical

layer is "four out of five" where each group of four symbols (binary digits) is encoded as a

group of five bits on the medium. Sixteen of the 32 possible combinations are for the data

bit patterns, three combinations are for delimiters, two are for control, three are for

hardware signaling, and eight are reserved for future use.

3-13

I SD I ACI ED I
Token Frame Format

I SDIAcl FCI D^ I SA I Data
Data Frame Format

SD - Starting Delimiter (1 byte)
AC - Access Control {1 byte)
FC - Frame Control (1 byte)
DA - Destination Address (2 or 6 bytes)
SA - Source Address (2 or 6 bytes)
Data - Data Field (any number of bytes)
Checksum - Checksum for DA+SA+Data (4 bytes)
ED - Ending Delimiter (1 byte)
FS - Frame Status (1 byte)

I checksumI ED I FS I

FDDI
IEEE-Std-802.5

FDDI with Laning Poll

I Lanin_ Preamble} SD I AC I FC I DA I SA I /I I Checksum I ED I FS I

iii

Data Frame Format (same as above)

I

Laning Preamble

ISta.BitI O-B.I T-BitI D-BitI Priority Bi= I Device,oBi_ I
Start Bit - Mark the beginning of the Poll Sequence
Q-, T- and D-Bits - Identify Quad, Triplex and Duplex processing sites
Priority Bits - Three bits specifying the priority of the request
Device ID Bits - Six bits specifying the ID of the processing site

Figure 3-8. IC and I/O Network Data Frame Format

The Network Interface Sequencer module, when used as the interface to the

InterComputer Network, will be connected to the three network layers as was done in the

proof-of-concept system. The I/O network does not have the redundant layers, however,

and the module design, with the three inputs and the state exchange logic, does not appear

to be capable of operating with the single layer I/O network. The common interface module

design will interface to the I/O network if a fiber optic beam splitter is used to provide the

three parallel inputs required by a NIS module, and the state exchange outputs are "looped

back" so the state exchange inputs are monitoring their own exchange outputs. In this

way, an interface module connected to the I/O network will "vote" the single set of input

data and the state machines and state exchange hardware will be "synchronizing" with

itself.

3-14

Engineering Model Network ArbitrationTiming (32 Nodes

48 usec _._._,24 usec_._._,24 usec_._._24 usec_._._,

Start Bit Q-Bit T-Bit I D-Bit

216 usec

Priorityand ID

v

AIPS/ALS Network ArbitrationTimina (32 Nodes'

3 usec

Start Bit

i_,1.5 usec,.._I_1.5 usec,.=I_1.5 useq..._I_.,

I Q'BitI TBi, I D'BitI

13.5 usec

wI

Priority and ID

AIPS/ALS Network ArbitrationTiming 14 Node¢,)

1 usec
v

Start Bit

.,0.5 useq.. _0.5 usec,,_ _0.5 usec,.._ 4.5 usec

I Q-Bit I T-Bit D-Bit //

Priority and ID

Figure 3-9. Network Arbitration Timing

3.5.1.1.4. Communicator and Interstage

The communicators, resident on each shared bus and thus shared by the processors

in their respective channels, together with the Interstages are used to tie the four channels of

the FTP together in a manner that guarantees that each FTP processor can maintain

congruent inputs, state information and outputs. The interchannel hardware, the

communicators and the interstages, is used to exchange and vote data, fault-tolerant clocks,

and external interrupts.

The interstages provide the additional Fault Containment Regions (FCRs) and the

connectivity required for an efficient implementation of the two round communication

algorithm required to correctly handle Byzantine failures. To ensure the integrity of these

additional FCRs, the interstages are powered by power supplies independent of the power

supplies used to power the processors and shared hardware. In addition, all inter-FCR

connections are made using fiber optic drivers, receivers and cables so that the integrity of

the FCRs cannot be compromised. This electrical isolation prevents a fault in any given

FCR from migrating past the boundaries of that region and corrupting other FCRs.

3-15

The communicator and interstage function will be based on the corresponding

functions developed in the AIPS engineering model. The three fundamental purposes of

the communicator and interstage hardware and its fiber optic data communication paths are:

1) Provide the paths for distributing data in one channel to all other channels; 2) Provide a

mechanism for comparing results of the redundant channels; and 3) Provide a path for

distributing and comparing timing and control signals such as the fault tolerant clock and

external interrupts. As shown in Figure 3-6, the communicator and interstage functions

reside in each channel and are accessed via the channel's shared bus.

Two types of data exchanges are possible. These are simplex exchanges and voted

exchanges. The simplex exchange is used to distribute copies of data from one channel to

all other channels in a congruent fashion. An example of such a data item is the value of a

sensor that is available in only one channel. Voted exchanges, on the other hand, are used

to compare and vote results of the redundant channels. An example is an actuator

command produced by a control law implemented in all channels, which is to be voted

before the command is issued to the actuator.

Data will be exchanged between the redundant channels one 16 bit word at a time.

To perform a voted exchange, each processor writes the value to be voted in the transmit

register. Writing to this register initiates a sequence of events in hardware which

culminates with the voted value being deposited in the receive register of each processor.

The processors in each channel can read the receive register atthis point to fetch the voted

value.

A significant portion of the existing communicator function has been implemented

as an Application Specific Integrated Circuit (ASIC). The ASIC, a 6000 gate, 2.0 micron

CMOS Configurable Gate Array, implements the data communicator function but the clock

and interrupt communicator functions are implemented separately. The implementation for

the Advanced Launch System will use a 20,000 gate, 0.8 micron CMOS gate array and will

incorporate the data, clock and asynchronous interrupt communicator functions. The data

paths will be serialized/deserialized using logic also on the new gate array. The serial data

rate will be 128 MBPS which supports peak data exchange rates of eight megabytes per

second.

The interstage functions will also be implemented using a 20,000 gate 0.8 CMOS

gate array. This gate array will integrate the data, clock and asynchronous interrupt

interstage functions. The communicator and interstage functions are all very similar and, as

such, the two ASIC will have approximately 95% common designs.

Figure 3-10 shows the block diagram of the communicator and Figure 3-11 shows

the block diagram of the interstage. Critical to the proper operation of the communicator is

the fault masking action inherent in the design of the hardware voter. The voter compares

the four parallel data streams on a bit-by-bit basis and produces a "majority" output bit for

3-16

eachinput bit. Any disagreementsin thevotingprocessaredetectedandtheidentityof the
disagreeinginput is storedin anerrorregister.Therearefive bits in theerrorregister:one
bit for eachof thefour inputsandafifth bit which is setto indicatethatapairwisesplitwas
detected.In thepresenceof a singlefault, thevoterproducesthecorrectresult andlatches
theidentityof thefaulty input.

A voter with four inputs can tolerate two faults if and only if it is has been

configured to vote on only three inputs (assuming one of the faulty inputs is the input being

ignored). Therefore, associated with each voter in the communicator is a voter mask

register. This register contains a four bit mask used by the voter and permits voting of data

only from the unmasked inputs.

The AIPS approach to achieving exact consensus is to use identical software

running on identical, redundant, "clock deterministic" hardware operating in tight, micro-

L!R
I

nputs from Other
Communicators

M
To My Interstage

L ___1 To Left, Right
R and Opposite

O ,_.._J Communicators

o

- M --Ibm

L
Inputs from - --_

Interstages R _ VOTER

O

Voter Mask

Figure 3-10. FTP Communicator

3-17

From

My Communicator

---_ Line Drivers _==I_ -=

To
Communicators

Figure 3-11. FTP Interstage

frame synchrony. As noted earlier, for hardware to be "clock deterministic", it must

perform each of its operations in a fixed and predictable number of clock

cycles.Synchronous operation of that hardware then allows an efficient, hardware oriented

solution to the Byzantine Generals Problem. It relieves the software of the burden of

maintaining process synchrony. In addition, it allows the necessary voting to be performed

in hardware in a.straightforward manner. This means that errors can be detected and

masked as they occur, transparently to the application software.

One way to achieve synchronization of the redundant hardware would be to drive it

with a single clock. However, a common clock would represent a potential single point

failure. Therefore the AIPS FTP uses redundant clocks. To maintain synchrony, the clock

signals are digitally phase-locked to one another. To ensure that they are resilient to

Byzantine failures, they are exchanged and voted in a manner similar to the way data is

exchanged and voted. In this case, exact consensus between channels is achieved on the

relative phase of these clock signals and they are collectively known as the Fault-Tolerant

Clock (FTC).

Each channel of the AIPS FTP maintains its own version of the FTC. Like the rest

of the FTP, the FTC hardware is partitioned into eight FCRs as depicted in Figure 3-12.

However, the network topology used to interconnect these FCRs is different. Unlike the

communicators described above, each FTC communicator broadcasts its version of the

FTC to all FTC interstages because each channel's version of the FTC is a separate,

simplex clock source which must be exchanged and voted. Requiring each FTC

communicator to broadcast its version of the FTC to every FTC interstage, four simplex

source exchanges are performed in parallel with an additional voting plane at the

interstages. The voted clocks produced at each FTC interstage are then broadcast back to

all FTC communicators where they are voted the second time.

The frequency of the FTC is nominally 2 MHz which is too slow to drive most of

the hardware (for example, the microprocessors require a 40 MHz clock). Therefore, a

faster clock that is deterministically related to FTC is required to drive the hardware in each

3-18

channel. In theAIPS engineeringmodel, that fasterclock is a 16MHz clock which, in
turn, is usedto produceFTC. For theALS, the fasterclock will be the40 MHz clock
neededby themicroprocessorsandtheir supportinglogic.

3.5.1.1.5. FTC and 40 MHz Signal Determinism

During normal operation, each channel's FTC is continuously compared to the "majority"

of all FTCs and adjusted accordingly. If a channel's FTC is in phase with the "majority",

no action is taken. If the channel's FTC is too slow, its period is shortened by a known

amount, and if it is too fast, its period is lengthened by the same known amount. The

"majority" can best be defined by illustrating an example. Figure 3-13 shows four clock

signals and the resulting "majority" that would be produced by the clock voter algorithm

used in the AIPS engineering model. Under steady state, no fault conditions, the output of

the voter algorithm is a very slightly delayed version (equivalent to the gate delay through

the voter itself) of the second fastest input to the voter. The voter is performing a second

edge detect algorithm. The "majority" output will only transition from one state to the next,

following the second input signal to transition to the new state.

In order to maintain a deterministic relationship between FTC and the 40 MHz

signal in each channel, whenever an adjustment is made to a channel's version of FTC,

corresponding adjustments are made to that channel's 40 MHz clock. Clock pulses in the

40 MHz pulse train are either unaltered or stretched (one 20 MHz clock pulse in place of

two 40 MHz clock pulses) to guarantee that there will always to be a deterministic number

of clock pulses in each half period of the FTC. When a channel's FTC is in phase with the

"majority", one 40 MHz clock pulse is stretched in that channel's 40 MHz clock signal (19

clock pulses in one period of FTC). Whenever the channel's FTC is late, Case 3 in Figure

3-14, this pulse stretching is suppressed, shortening the FTC period by one 40 MHz clock

cycle while retaining 19 clock cycles in one FTC period. If the channel's FTC is too early,

Case 2 in Figure 3-14, a second stretched clock pulse is included in the FTC period again

keeping 19 clock pulses in one FTC period.

3.5.1.2. Communications Node

The circuit switched nodes of the IC and I/O networks are identical and are based

extensively on the nodes developed for the AIPS engineering model. The Communications

Node (CN) and the operation of each set of Port Logic is portrayed in Figures 3-15 and 3-

16. Each node has five identical ports (only one port is shown in Figure 3-15) where a

port's input and output are connected via fiber optic cables to a device's output and input

port, respectively.

The FDDI data frame, described above, includes fields for the destination and

source addresses. Each device connected to the IC and I/O networks (ICIS, IOS and CN)

3-19

I

CPU and FTC I
Communicator I

I
CPU and FTC I
Communicator I

I
CPU and FTC [
Communicator I

I

CPU and FTC I
Communicator I

Figure 3-12. FTP Fault Tolerant Clock Topology

FTC1

FTC2

FTC3

FTC4

Majority

I I

I I

I I

I' I'I I

I I

I I

' I '! I

! !

i !
I I

I I

'1 '! I
! I

i I
I I
! !

F

Figure 3-13. FTC "Majority" Voter Operation

3-20

will beprovidedwith aunique16-bit identification code and, during communications, the

Destination Address (DA) field will be set to the desired destination's identification code.

The Source Address (SA) field will always be used to identify the originator of messages

and thereby specify which device should receive any required response messages.

3.5.1.2.1. Node Controller

There is one Node Controller in each CN and it is responsible for CN initialization,

monitoring the communications traffic for CN messages, and enabling or disabling the Port

Logic regeneration logic and transmitters as directed by the messages received via one or

more Port Logic receivers.

MAJORITY

_J I

Case 1: FTC in Phase with MAJORITY

0 I 2 3 4 5 6 7 8 9 I0 II 12 13 14 15 16 17 18 19 20

40MHz L

I I

 rc__A I
I

40MHz [Case 2: FTC Ahead of MAJORITY

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

I I I I

I F
I

Case 3: Frc behind MAJORITY [

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

40MHz

I I I clj I r

Figure 3-14. Clock Corrections

3-21

ThePort Logic decodes all messages received on any input port and compares each

DA to the 16-bit CN identification node. If the 16-bit address does not match the code for

the CN, the message is automatically discarded by the Protocol Decoder. If the DA

matches the CN's code the Protocol Decoder stores the message in the Receive FIFO and

sets appropriate status bits to indicate the reception of a message the validity/invalidity of

the message based on the Checksum. The Node Controller will then decode the message to

determine if it is a valid message and, ff it is a valid message, respond accordingly. If a

reply message is required, the SA included in the original message will be used as the DA

in the reply.

llllltlllllltltUtllllllllllllllUltttlttllUlltlttl

I

, (10FS)

PORT _]

INPUT

DATA

-t
q EXTRACT

I RECEIVE

I

REPEATER OTHER _ XMTR_=-_OUTPUT

_ PORTS _ DATA

" -i !
!

FROM _ [

REGENERATION t
OTHER _ LOGIC
PORTS

i
I
i
I

NODI_ CONTROLLER

I .JPROTOCOLI
PORT l------I CODE.I POR,INTERFACE _ FIFO

ENABLE

MESSAGE ENABLE
BUFFER REGISTER =,.. OTHER

b PORT

LOGIC

SEQUENCER

Figure 3-15. Communications Node

Examples of messages to be sent to CNs include requests for status and direction to

perform CN reconfiguration. The Network Manager, resident in selected processing sites,

can request status as an input to its network monitoring task and issue reconfiguration

messages to establish communication paths or to change the port enable status of the CNs.

3.5.1.2.2. Communications Port Receiver/Transmitter

Each of the five CN port receiver/transmitter are identical and Figure 3-16 is the

block diagram of these ports. Every port has a unique Port Enable signal which enables or

disables the path from the receiver and the path to the transmitter. If the port is disabled

3-22

andis failurefree,whateverdatapresentedto thereceiverisnot repeatedandwhateverdata
is presentedto thedataencoderis ignored.

If theportis enabledandis failurefree,thedatapresentedto thereceiveris repeated
andsentto theregenerationlogic in theotherfour ports. Theenabledport'sregeneration
logic will encodeadatastreamwhich is the logical-ORof theother four port'sreceivers
andtheNodeControllertransmitter.

TO NOOE PORT
CONTROLLER ENABLE

r m- --- _-- --- ° ,t

* (IOF 5) *! i

PORT = i _ TO
INPUT DATA ' _ OTHER
DATA I REPEATER , v

' I _"- PORTS
I !

I !

i I
I

' i
FROM I

OTHER i DATA PORT

PORTS _ ENCOOER OUTPUT
DATA

I
, REGENERATION =

FROM I LOGIC =

NODE t .. j
CONTROLLER

Figure 3-16. Node Port

3.5.2. Projected Performance Parameters

Some performance data was included in the above paragraphs. This section will

summarize the parameters that affect the performance of the AIPS building blocks when

they are implemented using the technologies projected to be available in the 1992-1993 time

frame. The resulting performance projections are summarized in Section 3.5.4.

3.5.2.1. Fault Tolerant Processor Channel

The Fault Tolerant Processor channel will be based on RISC microprocessors with

40 MHz clocks. Additionally, these microprocessors will be supported by instruction

caches which provide an average of one wait state per instruction fetch and a maximum of

four wait states for cache misses. Data caches will not be implemented due to the size

limitations of the SEM-E modules and four wait states will be required for all data accesses.

The memory available on each SEM-E processor module will be four megabytes of random

access memory (RAM) and read only memory (ROM), combined. The mix of RAM and

ROM will be variable in 256 Kbyte increments and will be determined after detailed design
of the application software.

3-23

EachFTP channelwill havetwo processors. These processors may be allocated

such that one performs all of the required computation while the other performs all input

and output or they may each share the computation and I/O burden. As in the engineering

model implementation each channel can be used in quad-, triplex-, dual-redundant or

simplex processing sites. The design of the Communicator and Interstage hardware and

the software supports the use of the same hardware at different levels of redundancy.

3.5.2.2. Communications Node

The IC and I/O Networks operate at a 100 MBPS signalling rate. At that signalling

rate, the information transfer rate is a maximum of 96.4 MBPS if the data frames are

transferring packets with 4,096 bytes of data. The information transfer rate will be

correspondingly lower for data frames with fewer bytes in the information field. The

design of the ALS Communications Node will be based on the engineering model and full-

duplex communication is supported throughout the network. All IC and I/O Network

connections will be made using fiber optic data links for electrical isolation and tolerance to

electromagnetic interference due to lightning strikes and pyrotechnic devices.

Each Communications Node will be implemented using a single SEM-E module.

Each module will provide five ports for connections to the processing sites or I/O devices

and a Node Controller implemented in a 20,000 gate, 0.8 micron ASIC.

3.5.2.3. AIPS for ALS Avionics Packaging

The packaging concept for the AIPS for ALS avionics is the Standard Electronic Module -

Format E (SEM-E) conduction cooled modules installed in base-plate cooled chassis.

Module-to-module interconnections are to be made using a motherboard rigidly mounted to

the chassis and the standard SEM-E 250 contact connector is used on all modules. Figure

3-17 illustrates the packaging concept for the AIPS for ALS avionics.

3.5.3. Hardware Failure Rate Projections

MIL-HDBK-217E provides the failure rate data and method for estimating

reliability during early design phases [16]. The information needed to apply the method is:

1) Generic part types including complexity for microelectronics and quantities; 2) Part

quality levels; 3) Estimate of the number and type of opto electronic components; 4)

Estimate of the number and type of passive components (resistors and capacitors); 5)

Estimate of the number of connectors and connector contacts; 6) Estimate of the number of

other connections (e.g., device solder joints); and 7) Equipment environment.

3-24

Top Cover Includes EMI/EMC
Gasket and Environmental
Gasket.

conduction Cooled
Module with Circuit

Boards and Component on
Both Sides.

Baseplate Mounted and Cooled
Chassis with Circular-MIL

Connectors on One End and Single
Modules.

Figure 3-17. AIPS for ALS Packaging Concept

3-25

The expression for generic parts failure rate using this method is as follows:

where

n

LGeneric=_ Ni(_a3XQ)i
i=1

_namc = total generic parts failure rate (failures / 106 hours)

Ni = quantity of ith generic part

= generic failure rate for i _ generic part (failures / 106 hours)

= quality factor for i th generic part

n = number of different generic parts categories

(3-1)

In addition to the generic part failure rates estimated above, the failure contributions

due to the discrete components and connections can also be estimated using expressions
outlined below.

The opto electronic devices required for the IC and I/O networks and the FTP inter-

channel data links have per part failure rates estimated by the following:

where

----_,_T_E_,Q failures / 10 6 hours

_,b -" base failure rate (failures / 106 hours)

XT = temperature factor

XE - environmental factor

XQ - quality factor

(3-2)

Digital integrated circuits and analog components require power supply bypass

capacitance and ceramic capacitors are typically used for this function. This type of

capacitor has per part failure rates estimated by the following:

where

_p = _.bgEXQXCV failures / 10 6 hours

_.b = base failure rate (failures / 106 hours)

_. - environmental factor

r_ = quality factor

= capacitance factor

(3-3)

Film resistors are used to set predefined signal levels, specify analog amplifier

gains and limit currents. They have per part failure rates estimated by the following:

where

= _.bgE_QXR failures / 10 6 hours

_,b = base failure rate (failures / 106 hours)

gE = environmental factor

(3-4)

3-26

r,.Q = quality factor

nR = resistance factor

Connectors (MIL-C-38999 Circular), to be used on the LRUs, have per part failure

rates estimated by the following:

where

_Lp= _-bgEgPgg failures / 10 6 hours

2tb = base failure rate (failures / 106 hours) = 0.02e x

X = -1592 + (T+273h 5.36. T = operating temperature
T " 473 " '

gE = environmental factor

gp = number of active contacts in connector

gK " mating/unmating factor

(3-5)

Module connectors, to be used on the SEM-E modules, have per part failure rates

estimated by the following:

where

_tp = _.b/l:E/tPnK failures / 106 hours

_.b = base failure rate (failures / 106 hours) = 0.216e x

x = -2073.6 + (T+273) 4.66. T = operating temperature
T " 423 " '

xE = environmental factor

gp = number of active contacts in connector

gK = mating/unmafing factor

(3-6)

Other connections in the system, such as integrated circuit leads to circuit boards,

have failure rates estimated by the following:

where

11

'P=gEZ Ni(-bi_.Ti/l:Qi)

i:l (3-7)

gE = environmental factor

Ni = number of connections of the ith type

_,bi : base failure rate of the ith type connection

gTi = tool type factor for the i th type connection

/r,Qi = quality factor for the ith type connection

The individual failure contributors, estimated using the above expressions, can then

be summed and the result is the total estimated failure rate.

3-27

Tables3-1through3-10list theanticipatedpartsrequiredfor the implementationof
the AIPS for ALS avionics andtheir genericfailure rates. Included in the list are the
integratedcircuits, resistorsusedfor settingsignalsto desiredstates,capacitorsusedfor
filtering noisefrom the supplyvoltages,anestimateof thenumberof gatesrequiredfor
eachintegratedcircuit, andthenumberof electricalcontacts.Tables 1,3, 5, 7, and9 are
for operationwhile thevehicle is on the launchpadandTables2, 4, 6, 8, and 10are for
systemoperationduring poweredflight, i.e., theboostphase. Thesedataareusedin the
MIL-HDBK-217E definedcalculationof themodulemean-dme-between-failure(MTBF)
whicharealsoshownin thetables.

The failureratesof the AIPS/ALS avionics modules are summarized in Tables 3-

11, 3-12, and 3-13 for the three ALS mission phases - launch pad, boost phase, and on-

orbit - respectively. The on-orbit failure rates were obtained by using the space

environmental factor _'E = 0.9.

Module: CP, J Environment: Ground Fixed

Part No.: Pert Name: Quantity: r,=_- I/O Contacts: Generic Fail Rate: Env/Temp Factor: Fail./10A6Hrs.

1 Mk_r?processor 1 105_000 166 0.2802 1.00 0.2802

2 Coproc-e+-c_u3-r 1 80_000 132 0.7802 1.00 0.2802

:} RAM 4 2,1qq,o00 40 0T5416 1.00 2.1665
4 ROM 30 1,100,000 40 0.2447 1.00 7.3410

S CPU ASIC 1 20t000 200 0.4103 1.00 0.4103

6 Bus Transceivers 1 0 200 20 0.1627 1.00 1.6270

7 Resistors 8 0 n/a 2 0.0037 1.00 0.2960

8 (_aD_lcitors 4 0 n/a _ 0.Q170 1:00 0.6800
9 I/O Connector 1 n/a 350 3.17E- 12 2.00 6.35E- 12

Table 3-1.

MTBF 76445.6

CPU Module Parts List (Ground Fixed)

Module: CPU Environment: Missile Launch

Pert NO.: Pert Name: Quantity: C-.,,m-" I/O Contacts: Generic Fail Rate: Env/Temp Factor:

1 Microprocessor 1 105,000 168 1.2143 1.00

2 Cop'oce-_--r 1 80,000 132 1.2143 1.00!

3 _ 4 2,100,000 40 1.26951 1.00 _
4 ROM 30 1,100,000 40 0.70601 1.00

S PvPU A._ I 20.000l 200 1.8097 t .00

6 Bus Transceivers 1 0 2001 20 0.16271 1.00

7 Resistors 8 0 nla 2 0.0540_

8 Cepecitgrs 4 0 hie 2 0.0100
9 I/O Connector 1 nla 350 3.17E - 12

Fsil./10^6Hrs:

1.2143

1.2143

5.0781

21.1800

1.8097

1.627G

1.00 4.320G

1.00 0.400G

1.50 4.76E-12

MTBF: 27141.9

Table 3-2. CPU Module Parts List (Missile Launch)

3-28

Module:
PartNo,:

I!

3

4i

5

6

7
8

Share Devices

Part Name: Quantity: Gale_
Reel-Time Clock 1 1=500

Watchdoq Timer 1 75 [
RAM 4 21100,000

Maintenance ASIC 1 20,000

Bus Tran_q_pvers 10 _200
Resistors 80 n/a

Caga¢itors 40

I/O Connector 1

Environment: Ground Fixed

VO Contacts: Generic Fail Rate: E_nv/Temp Factor: Fail./10^(_Hr$:
168 0.0750 1.00 0.0750

132 q.0391 1.90 9.9_1_1
40 0.5416 1.00 2.1665

200 0.4103 1.00 0.4103

T0 9.1627 1.00 1._70
2 0.0037 1.00 0.2960

n/a 2 0.0170 1,99 9,_#90
nla 350 3.17E-12 2.00 6.35E-12

MTBF: 188896.8

Module:

Part No.:
1

2

3
4

5
6

7
8

Table 3-3. Shared Devices Module Parts List (Ground Fixed)

Share Dewces

Part Name: Quantity: Gates:. I/O Contacts:
Reel-Time Clock 1 1,500 168

Watchdog Timer 1 750 132

RAM 4 _,100,000 4C
Maintenance ASIC 1 20_000 200

Bus Transceivers 10 _ 00 2 C
Resistors, 8 0 n/a 2

Capacitors 4 0 n/a 2
I/O Connector 1 n/a 350

Environment: Missile Launch

Genefic FailP_te: Env_emp Factor:
0.3091 1.00
0.1627 1.00

1._698 1.90
1.8097 1.00

Fail./10^6Hrs:

0.3091
0.1627

8.9761
1.8097

9._480 1,09 _.4800
0.0540 1.00 4.3200
0.0100 1.00 0.4000

3.17E-12 1.50 4.76E-12
MTBF: 68683.4

Table 3-4. Shared Devices Module Parts List (Missile Launch)

Modute:

PaR No.:
1
2

3
4

5
6

7
8

9

Module:

Part No.:

1
2

3
4

5

6
7

8
9

COM/INT

Part Name: Quantity: Gata¢ I/O Contacts:

qOMAS_ 1 ;J,o,qqo 168
INT ASIC 1 20,000 132

Oscillator 2 50 40
Bus Transceivers 1 0 200 20

F/O Transmitter 8 250 4 0
F/O Receiver 8 2,500 4 0!

Resistors 8 0: n/a 21

Capacitors 4 0 n/a 2
I,tO Connector 1 n/a 350

_nvironment:
Generic Fail Rata:

Ground Fixed

0.4t03
0.4103

Env/Temp Factor:
1,99
1.0(

Fail./10^6Hrs:

p.41o_
0.4103

0.0830 1.00 0.1660
0.1627 1.00 1.6270

0.0698 1.00 0.5584
1.4704 1.00 11.7632

0.0037 1.00 0.2960
0.0170 1.00 0.6800

2.00
MTBF:

3.17E-12

Table 3-5. COM/INT Module Parts List (Ground Fixed)

6.35E-12
62848.8

COM/INT Environment: Missile Launch

Part Name: Quantity: Gate¢l I/O Contacts: Generic Fail Rato:l Env/Temp Factor:

_ASIC 1 ;_0,000 168 1.8097 1.00 1.809"_
INT ASIC 1 20 _000 132 1.8097 1.00 1. 809"_

Oscillator 2 50 40 1.1000 1.00j 2.200C
Bus Transceivers 1 0 200 20 0.2460 1.00 2.480C

F/O Transmitter 8 250 40 1.155; I. 00 9.241 E

F/O Receiver 8 2_500 40 18.3091 1.00 146.472_
Resistors 80 n/a 2 0.0540 1.00 4.320C

Capacitors 4 _l n/a 2 9.9100 1.0(0. 400C
I/O Connector 1 n/a 350 3.17 E- 12 1.50 4.76 E - 12

MTBF: 5926.5

Table 3-6. COM/INT Module Parts List (Missile Launch)

Fail./10^6Hrs

3-29

Module:

Part _,i
1

2
3
4!

i

6

7!
.1

i

Nr,

Par_ Name:
IEEE-802.5 ASlC
F/O Transmitter

FIO Receiver
RAM

Bus Transceivers

Resistors

Cm_giRr_
I/O Connector

Quantity:
1

1
1

8
10

60

49
1

Gate:

301000
250

2,500

2,100,000
2O0

nla
n/a

n/a

I/O Contpcts:
168

4C
4C

4C
2C

2

35O

Environmeni[:
G_i¢ Fail Rate:

0.4103

0.0699
1,4704

0.5411
0.1627

0.0037
9_0170

3.17E-1:

Ground Fixed
Env/Temo Factor:

1.00

1.00
1.00
1.00
1.00

1.00

1.991
2.00 i

MTBF:

Table 3-7. NIS Module Parts List (Ground Fixed)

Fail./10^6Hrs:

0.4103

0.0698
1.4704
4.3330
1.6270

0.2960
0.680C

6.35E-12
112530._

Module: NIS
Part No.: Part Name:

IEEE-802.S ASIC

21 F/O Transmitter

RAM
J

Bus Transceivers
6i Resistors

-' Capacitors
a l I/O Connector

I

Quantity:
1

'1

1

8

10
80

40
1

Ga=_
30,000

25O

_.5oo
_,100,000

200
nla

n/a
n/a

40
40
40

20
2

2
35O

Environment:

Generig, Fail Rate:
1.8097

1.155;

14 3091_
1.25951
0.2480
0.054(

0.0100
3.17E-1;

Missile IJunch

[_nv/Temo Factor:
1.00

1.00

1.00

1,00
1.00

1.00
1.50

MTBF:

Fail./10^6Hrs:
1.8097

1.1552
18.3091
10,1561

2.480C
4.320C

0.4000
4.76E-12

25886.5

Table 3-8. ICIS/IOS Module Parts List (Missile Launch)

Modul_; I

Part Noi:

=-I

,'1
I

-I

,^]

-I

Module:

Part No.:
1

¢

4

5
6
7
8

9
10

Q_I

Part Nsme:J Quantity:
IEEE-802.5 _SlC I 1

I
_M 1

Oscillator 2
FIO Transmitter 5

F/O Receiver 5
Re$istora 80

Capacitors 40
I/O Connector _ 0

i

Table 3-9.

¢N

Part Name:
IEEE-802.5 ASlC

CNASIC

RAM
ROM

Oscillator
FIO Trancmitter

F/O Receiver
Resistors

Capacitors
I/0 Connector

Quantity:
1

1

1
1
2

5
5

90

40
20

Table 3-10.

30.000

20t000
2,100,000

1.100.000
50

250

2,500
nla
nla

n/a

168
168

40

40
40
40

40
2

0.4103
0.4103
0.5416

0.2447
0.0830

t_9o
1.00

0.0170

1.00

1.00
1.00

0,4103
0,4103

2O

0.5416

0.2447
0.1660

0.0699 1.00 0.3490

1.4704 1.00 7.3520
0.0037 1.00 0.2960

1.00

2.00
MTBF:

3.17E-12

0,580C

1.27E-I0
95694.5

CN Module Parts List (Ground Fixed)

Cam: PO Contacts:
30,000 168

20,000 168

2.109,000
1,100,000 :I

50 40

250 40

2,500 40
n/a 2

his 2
nla 20

Environmenc

Generic Fail Rate:

Miss_e Launch

Env/Temp Factor: Fail./10^6Hrs:

1.80971.8097 1.00

1.8097 1.00 1.8097

I._695
0,7060

1,9o
1,00
1.00
1.00

1,00

1.1000
1.155_

18.3091

,169
0.7060

2.2000
5.7760

91.5455
0.0540 1.00 4.3200

0.0100 t.00 0.4000
3.17E-12 1.50

MTBF:

9.52E-11

9104.4

CN Module Parts List (Missile Launch)

3-30

Channel Module Complement:
CPU Module

Shared Devices Module
COM/INT Module

NIS Module

Communications Node:
CN Module

Qty: Fail. Rate:
2 1.31E-05
1 5.29E-06
1 1.59E-05
2 8.89E-06

Channel Failure Rate:
Channel MTBF:

Qty: Fail. Rate:
1 1.04E-05

CN Failure Rate:

Aggregate:
2.62E-05
5.29E-06
1.59E-05
1.78E-05
6.51E-05

15r351.4

Aggregate:
1.04E-05

1.04E-05
CN MTBF: 95,694.5

Table 3-11. Channel and CN Failure Rates (Ground Fixed)

Channel Module Complement:
CPU Module

Shared Devices Module
COM/INT Module i 1

NIS Module 2

Qty;
2i
1

Fail. Rate:
3.68E-05

Aggregate
7.37E-05

1.46E-05 1.46E-05
1.69E-04 1.69E-04
3.86E-05 7.73E-05

Communications Node:
CN Module

Channel Failure Rate:
Channel MTBF:

Qty: Fail. Rate:
1 1.10E-04

CN Failure Rate:

3.34E-04

2_991.9

Aggregate:
1.10E-04
1.10E-04

CN MTBF:: 9,104.4

Table 3-12. Channel and CN Failure Rates (Missile Launch/Boost Phase)

Channel Module Complement:
CPU Module

Shared Devices Module
COM/INT Module

Qty: Fail. Rate:
2 2.54E-6
1 1.01 E-6
1 1.17E-5

Aggregate:
5.10E-6
1.01 E-6
1.17E-5

NIS Module 2 2.67E-6 5.35E-6
Channel Failure Rate: 2.31 E-5

Channel MTBF:

Communications Node:l
CN Module

Qty: Fail. Rate:
1 7.6E-6

CN Failure Rate:

43,290

Aggregate:
7.6E-6
7.6E-6

CN MTBF: 131,529

Table 3-13. Channel and CN Failure Rates (On-orbit)

3-31

3.5.4. Performance Projections of AIPS for ALS Building Blocks

This section highlights some of the important performance projections of the AIPS

building blocks for ALS. A complete projection of all the performance metrics is beyond

the scope of this study. However, the performance summary given in this section is

adequate to do a preliminary definition of the ALS architecture. The performance has been

projected using several sources of information. The details of the expected microprocessor

performance in the 1992 time frame are provided in the hardware technology survey and

projections [2]. A complete set of metrics that are considered relevant for the ALS

applications and the empirical performance data for a subset of these figures of merit are

described in [1, 8]. The empirical data collected on the current versions of the AIPS

hardware and software [1, 8] forms the basis which was used with the estimated

parameters of the AIPS/ALS flight system, described earlier in Section 3.5.2, to project the

performance of the AIPS/ALS flight system.

The AIPS/ALS performance is partitioned and summarized along the hardware

building blocks. Table 3-14 is a summary of the performance projections of the FTP

hardware building block and the Local System Services software building block. (The

details of the Local System Services software are provided in [9]). Table 3-15 is a

summary of the performance projections of the I/O network and IOS hardware building

blocks and the IIO System Services software building block. (The details of the I/O

System Services software are provided in [1(3] and [11]). Table 3-16 is a summary of the

performance projections of the Inter-Computer (IC) network and ICIS hardware building

blocks and the IC Communication Services software building block. (The details of the IC

Communication Services software and the ICIS and IC network hardware are provided in

[12].) The table presents the time for a site to site communication between a source

application task executing on one FTP sending a message to a sink application task

executing on a different FTP. It is the time from when the source application task calls the

SEND_OUTPUT routine with a message until the sink application has the message

available. The total projected time for the AIPS/ALS is 1.278 milliseconds.

3-32

1. FTP THROUGHPUT

1.1 Raw CPU Throughput

15 MIPS (DAIS Mix) Per Processor

30 MIPS Per FTP

1.2 Total Overheads

1.2.1 FTP Redundancy Management

CP 1% of Throughput

IOP 1% of Throughput

1.2.2 Cross-Channel Synchronization

CP 5% of Throughput

IOP 5% of Throughput

1.2.3 IOP-CP Contention

CP 5% of Throughput

IOP 5% of Throughput

1.2.4 I/O and I(2 Network Management

CP 0

IOP 10% of Throughput

1.3 Useful FTP Throughput

CP 89% or 13.35 MIPS

lOP 79% or 11.85 MIPS

FTP 25.2 MIPS

2. ADA RUN TIME SYSTEM OVERHEADS

2.1 Ada Run Time System on CP or IOP

2.2

2.1.1 Timer Dispatch

2.1.2 Local Event

2.1.3 Simple Context Switch

IOP-CP Communication

2.2.1 Global Event

Source CPU (CP or IOP)

Sink CPU (lOP or CP)

432 instructions (27 Its)

196 instructions (12 Its)

100 instructions (6 _s)

132 instructions (8 Its)

240 instructions (15 Its)

Table 3-14. AIPS/ALS FTP and Local System Services
Performance

Projected

3-33

3.2.

3.3

3.4

REDUNDANCY MANAGEMENT

Permanent FDIR (Fault Detection, Isolation and Reconfiguration)

3.1.1 No Fault Conditions

CP 736 instructions (46 its)

IOP 680 instructions (42 its)

3.1.2 Data Exchange Network Fault

CP 2024 instructions (126 its)

120 instructions (75 its)IOP

3.1.3 Unsynchronized Channel

CP

IOP

Transient FDIR

3.2.1 No Fault Conditions

CP

IOP

3.1.2 Data Exchange Network Fault

CP

IOP

3.1.3 Unsynchronized Channel

1536 instructions (96 its)

430 instructions (270 its)

20 instructions (1.25 Its)

56 instructions (3.5 its)

464 instructions(64 its)

64 instructions(4 its)

CP 728 instructions(45.5 its)

lOP 64 inslxuctions(4 its)

Average Fault Detection, Isolation and Reconfiguration Time

10 msec

Inter-Channel Data Exchange

3.4.1 Fault Tolerant Clock Frequency

3.4.2 Data Exchange Bandwidth

2 MHz

4 Mwords/sec or 64 Mbits/sec

Table 3-14. AIPS/ALS FTP and Local System Services Projected
Performance (cont.)

3-34

RawI/O NetworkBandwidth = 100Mbits/Sec

.

1.1

2.2.

COMMUNICATION MANAGEMENT OVERHEADS lOP

I/O Processing

1.1.1 10 Transaction Chain

1.1.2 8 Transaction Chain

1.1.3 2 Transaction Chain

7040 instructions (440 Its)

5600 instructions (350 Its)

3360 instructions (210 Its)
REDUNDANCY MANAGEMENT OVERHEADS

Table

Network FDIR

2.1.1 Failed Channel

2.1.2 Failed IOS

2.1.3 Failed Link (Leaf Node)

2.1.4 Failed Leaf Node

2.1.5 Failed Link (Branch)

2.1.6 Failed Branch Node

Network Growth

2.2.1 Full Diagnostics

2.2.2 No Diagnostics

2.2.3 Single Chain

3-15. AIPS/ALS I/O

929 instructions (58 Its)

14800 instructions (925 Its)

24134 instructions (1,508 Its)

35344 instructions (2,208 Its)

24664 instructions (1,541 Its)

46264 instructions (2,892 Its)

473600 instructions (29,600 Its)

81600 instructions (5,100 Its)

19366 instructions (1,200 _ts)

Network and I/O System Services Projected

Performance

Raw IC Network Bandwidth = 100 Mbits/Sec

LOCATION

Source FTP

Source FTP

Source FTP

IC Net

Sink FTP

Sink FTP

Sink FTP

Sink FTP

Sink FTP

SEND_OUTPUT

Set Event

MSR Task

Time on Network

PROJECTED PERFORMANCE

493 instructions (30.8 Its)

187 instructions (11.67 Its)

760 instructions (47.5 Its)

67 Its

Ave Time for Polling for msg

ICIS RM

Context Switch

MSR Task

GET_INPUT

1000 Its

1293 instructions (80.8 Its)

120 instructions (7.5 Its)

426 instructions (26.7 Its)

102 instructions (6.67 Its)

Total Task-to-Task Communication Time on IC Network = 1.278 msec

Table 3-16. AIPS/ALS IC Network and IC Communication Services

Projected Performance

3-35

3-36

4.0 PRELIMINARY ALS AVIONICS ARCHITECTURE

As discussed in Section 1 on the design for validation methodology, AIPS for ALS

configuration(s) are defined using as inputs the AIPS architectural rules, guidelines and

attributes, the projected reliability, performance, physical characteristics and other attributes

of the building blocks, and the ALS avionics requirements. The ALS avionics

requirements were described in Section 2 and the performance and reliability parameters of

the AIPS hardware and software building blocks, projected in the ALS time frame, have

been summarized in Section 3.

The process of matching the avionics requirements with the building block

capabilities is a multidimensional problem. However, it can be simplified by decomposing

the requirements into two orthogonal sets each of which can be mapped independently of

the other as a first order approximation and each of which determines a different aspect of

the architecture. The performance related ALS requirements such as throughput, memory,

transport lag, input/output latencies, etc. determine the virtual avionics architecture. The

reliability related ALS requirements such as probability of mission success, launch

availability, launch pad maintenance, function criticality, etc. determine the physical
avionics architecture.

A preliminary definition of the AIPS for ALS avionics architecture has been carried

out using the architecture synthesis process described in Section 1.2. Sections 4.1 and 4.2

describe the preliminary virtual and the physical avionics architecture for ALS,

respectively. Using the projected performance and reliability parameters of the building

blocks, analytical models of the ALS architecture were solved to predict the avionics

reliability and the availability for the ALS mission scenario. These results are described in

Section 4.3. Section 4.4 concludes with some thoughts on future work necessary to

complete the ALS architecture synthesis.

4.1 Virtual Architecture

The ALS functions that require the highest throughput are IMU and GPS

processing, Kalman filter, adaptive guidance and control, and propulsion control. Using

the Martin Marietta supplied processing requirements, all the non-propulsion functions

require a total of about 8.8 MIPS throughput (including margins) with a peak

instantaneous throughput of about 3 MIPS to perform part of the Navigation/IMU

Processing function. The total is the sum of throughput requirements for all tasks. The

peak is the throughput required to perform an indivisible task. If a processor is not fast

enough to execute all the tasks then the workload can be assigned to a number of parallel

processors. However, a processor with at least the peak throughput is required to run the

highest throughput indivisible task. The most demanding non-propulsion peak throughput

requirement of 3 MIPS for the ALS results from the Bending Processing task, which is

4-1

PRECEDING PAGE BLA_,_K NOT FILMED

part of the Nav/IMU function. The Bending Processing task executes only 300

instructions per iteration. At the 100 Hz iteration rate of this task, the average margined

throughput requirement is about 0.03 MIPS. However, in order to meet the processing lag

constraint of 0.1 msec, the peak throughput requirement rises to 3 MIPS. Since this is

considerably below the expected processor throughput for the ALS time frame, this

requirement does not pose a problem. However, if such a fast processor were not

available, one would need to analyze the Bending Processing task further to see if it can be

parallelized into two or more pans.

Since all of the non-propulsion functions taken together require less than the total

useful throughput projected to be available in an ALS Fault Tolerant Processor, all of the

non-propulsion functions can be allocated to a single FTP. We will call this the core FTP.

If the total throughput requirement had exceeded the capacity of a single FTP, some criteria

such as function criticality, interfunction communication rates, etc. would have had to be

used to partition the ALS functions into groups and allocate them to different FTPs. The

core FTP will have a growth margin of 16.4 MIPS (25.2 MIPS useful FTP throughput

from Table 3-14 minus 8.8 MIPS throughput required for all non-propulsion functions

from Section 2) or 186 per cent. This is in addition to the throughput margins already built

into the processing requirements at the task level as described in Section 2.

Another constraint on allocating functions to a single FTP is the FTP data exchange

bandwidth. All the sensor inputs must be made congruent using the data exchange

hardware before they can be used by the applications functions. All the outputs are also

usually voted before they are sent out to actuators. The output voting also uses the same

data exchange hardware. The total I/O bandwidth requirement for all the non-propulsion

functions is estimated to be I 1.2 Mbits/sec. This is well within the projected bandwidth of

64 Mbits/sec of the FTP data exchange mechanism.

The ALS avionics functions allocated to the core FTP are listed below.

CORE FTP Functions

1 Central Control & Processing

2 Winds Ahead Determination

3 Vehicle Power System Management

4 Steering & Staging Control

5 Sensor Processing

7 Command & Telemetry Processing

8 Range Safety & Destruct

9 Programmable Payload

4-2

Each ALS engine requires a controller which must be capable of providing a useful

total throughput of about 4.8 MIPS with a peak of about 6.4 MIPS. Since the controller is

to be colocated with each engine, a dedicated FTP is necessary to host propulsion control

functions for each ALS engine. A single FTP per engine would provide a growth margin

of 20.4 MIPS or 400 per cent. If the colocation of the engine controller with the engine

were not a high level requirement, a single FTP could be allocated to control a group of 4

engines since it will have the throughput and the data exchange bandwidth necessary to

control 4 engines simultaneously. This would reduce the total avionics hardware

substantially and would still leave a growth margin of 6 MIPS. However, it may

complicate the logistics associated with assembling and testing each individual engine. The

propulsion controller I/O bandwidth requirement of less than 0.1 Mbits/sec is quite modest

and is easily accommodated by the FTP.

The virtual intercomputer communication architecture for ALS is quite

straightforward. It will be a virtual bus that interconnects the core FrP to all the propulsion

control FTPs. The bus bandwidth requirement is quite modest since all the non-propulsion

functions are colocated in a single processing site. The communication bandwidth between

the core FTP and all the propulsion FTPs in the ALS launch phase consists of propulsion

commands going to the engine FTPs and the engine status data flowing back to the core

FTP. The requirement for this is expected to be about 10 Mbits/sec which is well within

the projected intercomputer bandwidth of 100 Mbits/sec for the ALS IC network.

The virtual I/O communication architecture for the ALS would consist of a number

of parallel, virtual buses that interconnect ALS sensors and actuators to the FTPs. The

sensors and actuators in each engine will be connected to the FI'P controlling that engine on

a local bus. The core FTP will interface with the IMU, GPS, and all the other sensors

required to perform the non-propulsion functions. The number of parallel I/O buses

required in the core FTP and the propulsion FFPs is determined by the number of sensors

and the frequency of their access. Since the total I/O bandwidth required for all the core

FTP functions is 11.2 Mbits/sec, a single virtual I/O bus should suffice. This preliminary

I/O bus definition may be changed if the detailed performance modeling shows that some

performance criterion such as the transport lag can not be satisfied with a single bus. The

I/O bandwidth required for the propulsion FTPs is even less, only 0.1 Mbit/sec and can be

easily satisfied with a single virtual I/O bus.

The vehicle health monitoring functions, their processing requirements or the

number of sensors and the information flow associated with the sensors were not made

available to CSDL during the course of this study. Therefore no conclusions can be drawn

at this time about the virtual architecture that is required to read these sensors and perform

the vehicle health monitoring functions. However, it is possible that the number of these

4-3

sensors and the frequency with which they are read can easily exceed not only the available

bandwidth of I/O buses but also the capability of the processors to process the enormous

amount of collected data in real time. If, on the other hand, the majority of the sensors are

to be used to collect vehicle health data for launch pad monitoring (which would relax the

real time processing constraint) and/or for post-flight analysis, then the problem can be

dealt with quite effectively by providing a separate system which is dedicated to sensor

collection (but no real time analysis) and telemetry.

4.2 Physical Architecture

The architectural parameters that determine the AIPS physical organization for the

ALS avionics include: redundancy level of FTPs; redundancy levels of sensors, actuators

and other I/O devices; cross-strapping of I/O devices to channels of FTPs and redundancy

level of interfaces; trade-offs between FTP redundancy (triplex or quad) versus system

redundancy (N or N+I FTPs) for availability; redundancy level of intercomputer and I/O

networks; and physical topologies of networks.

Since all ALS functions are flight-critical and cannot be suspended for more than a

few milliseconds, a fault-masking computational architecture is required. Therefore, all

FTPs need to be at least triplex at the launch time. Earlier reliability modeling of the FTP

done for the ALS mission has shown that a triplex FTP has sufficient reliability to meet the

ALS requirements for short mission durations (of the order of several hours). Also, due to

the short mission time, no in-flight reconfigurations of the FFPs will be required to meet

the reliability requirement. That is, after a channel fails in-flight in an FTP, the outputs of

the failed channel to actuators will be disabled by the Monitor/Interlock circuitry.

However, no effort would be made to recover the failed channel and retry it to ascertain if

the channel failure was caused by a transient fault. However, for longer ALS missions, of

the order of tens of hours, it may become necessary to change this policy. In the present

AIPS FTP design, the realignment of the state of the faulted channel to the state of the good

channels is performed in software. Although this process is relatively fast for small

amounts of volatile memory, it can become unacceptably long for certain combinations of

large RAM and high iteration tasks that cannot be suspended. A new, hardware

implemented, channel realignment scheme has been developed to increase the speed of

realignment and to do it in background without suspending any applications tasks [13,14].

This will allow the ALS FTPs to recover from transient faults and continue to provide the

fault masking capability for longer ALS missions. The projected reliability of the ALS FTP

as a function of mission time, computed using the module failure rates projected for the

ALS time frame, is given in the next subsection.

4-4

The intercomputerbuswill bephysicallyimplementedasaredundantnetwork. A
triplex redundancylevel is requiredfor dynamicmaskingof intercomputercommunication
faults. However,it maybepossibleto relaxthisrequirementsomewhatanduseonly dual
redundantnetworksif sufficientprogresscanbemadein theuseof authenticatedprotocols.
Thephysicaltopologyof theIC networkwill bedeterminedby theconstraintsimposedon
thephysicallocationof thecoreFTPandthepropulsioncontrolFTPs.

The I/O buseswill also be implementedasredundantnetworks. Becauseof the
inherentredundancyin thesensorsandactuators,theI/O networksneednotbe triplicated.
Dual redundantnetworkswith a few sparelinks in eachnetworkareexpectedto meetthe
reliability and availability requirementsof ALS. The I/O network topologieswill be
determinedbythephysicallocationof sensorsandactuatorson thelaunchvehicle.

The I/O andIC networkswill beoperatedasstatic,non-reconfigurablebusesin-
flight for shortmissions.Formissionlengthsof tensof hours,it maybecomenecessaryto
makethem reconfigurable. The flight systemperformanceprojections,summarizedin
Section 3.5, showthat the in-flight reconfigurationsof networkscanbe accomplished
without suspendinganyof theALS applicationstasks.Thereconfigurabilityof networks
is alsointendedto toleratevariouslink andnodefailuresduring therelatively long 1 to 2
weekson the launchpad. This could obviatethe launchpadrepairsandlaunchdelays
resultingin areducedoverallcostof theALS.

ThecoreFTP wouldalsobeprovidedwith a sparechannelto obviate launchpad
repairs. Thus,thecoreFTPwould bequadredundantratherthan triplex assuringa high
probability of havingat leasta triplex level of redundancyat thescheduledlaunchtime.
The FTPwill beoperatedasaquadunit with all four channelsactiveandperforming the
sametasksin synchronism.Thisprovidesabetterfault coveragefor thefourth channelin
comparisonto a triplex with a standbysparechannel. Sincethenumberof FTPsin the
candidateALS architectureis small (only 1 is requiredto performall thenon-propulsion
functions), this strategyof providing a sparechannelin the FTP is quite cost effective.
However,if theALS requirementswereto increaseor theprojectedFTPthroughputwere
to besignificantly lower,moreFTPswouldberequiredto performtheALS functions. A

more cost effective strategy in this case may be to add a spare triplex FTP and provide the

sensor and actuator cross-strapping necessary to reassign functions to processing sites.

Use of global I/O networks enables a straightforward and cost effective sharing of sensors

and actuators among a number of FTPs. The next subsection provides numerical modeling

results on the availability of the ALS core avionics.

The sparing of the propulsion control FTPs may or may not be necessary

depending upon the philosophy of launching the ALS with fewer than a complete

4-5

complementof engines. The baseline ALS vehicle design supplied to CSDL has up to 17

engines. If it is necessary to have all the engines operating prior to launch (which is the

current launch philosophy), it will be necessary to make the engine control FTPs quad

redundant as well. However, if a new philosophy of launch with failed components is

applied to the ALS, and this can be more cost effective and safe if designed-in from the

outset, then it is no longer necessary to make sure that every engine controller has a fault

masking capability at the launch time.

4.3. Physical Characteristics

Each AIPS/ALS Fault Tolerant Processor channel will consist of six SEM-E

modules -- two CPU modules, one Shared Devices module, one Communicator and

Interstage module, and two Network Interface Sequencer modules. The SEM-E modules

are 5.88 in. x 6.68 in. x 0.6 in. and weigh approximately 1 lb. each. Power supplies will

also meet the SEM-E form-factor and will occupy two additional module slots in each

channel. Power dissipation is estimated to be 8 W for each CPU module, 2 W for the

Shared Devices module, 3 W for the Communicator and Interstage module, and 6 W for

the NIS module. Power dissipation for each channel, therefore, is approximately 41 W

including the power dissipation for 80% efficient power supplies. Each channel will be

packaged in a single chassis and the volume of the chassis is approximately 902 cu. in. (8

in. x 11.5 in. x 9.8 in) or .52 cu. ft. The weight of each channel, including the power

supplies and chassis, will be approximately 27 lb.

The projected physical characteristics of an ALS triplex and a quadruplex FTP are

summarized in Table 4-1.

Triplex FTP Quad FTP

Power 124 W 165 W

Weight 8I lb. 108 lb.

Volume 1.5 cu. ft. 2 cu. ft.

Table 4.1. AIPS/ALS Fault Tolerant Processor Projected Physical

Characteristics

It is illustrative to compare the physical characteristics of the AIPS/ALS FTPs to

computers on-board current launch vehicles. Two examples of current generation of space

launch vehicles are the space shuttle and the Titan.

Each of the three Space Shuttle Main Engines (SSME) has a dedicated engine

control computer built by Honeywell. The current version, called the block II, is a dual

redundant processor that controls a number of main propellent valves, solenoids and spark

4-6

igniters. The inputs to the controller include a numberof pressureand temperature
sensors.This computerweighs200 lbs and consumes490 Watts in the standbymode.
During flight, thecontrollerpowerconsumptionis 600 watts. Thecontrollerdimensions
are23.5" x 14.5"x 17.0"or about3.35cubic feet.

TheTitan seriesof unmannedlaunchvehiclesuseMagic352computerproducedby
theDelcodivision of GeneralMotors. Thisguidanceandcontrolcomputeris singlestring,
i.e.,hasno redundancy.It weighs68 lbs,consumes220wattsof powerandoccupies1.5
cubicfeet.

It canthusbeseenthatthephysicalcharacteristicsof the AIPS/ALS Fault Tolerant

Processors are well within the realistic constraints that might be imposed on the launch

vehicle avionics.

4.4 Reliability and Availability Projections

The reliability and availability models of the AIPS building blocks are described in

detail in Section 4 of the accompanying report: Advanced Information Processing System:

Design and Validation Knowledgebase [1]. These models were executed using the failure

rates and recovery rates for a 1992-technology ALS FrP summarized earlier in this report

in Section 3.5. The availability and the reliability of the AIPS for ALS avionics architecture

are presented in Tables 4-2 and 4-3. Table 4-2 lists these results for the case where the

core ALS FTP and all the propulsion FTPs are quadruply redundant. The results for the

ALS configuration consisting of all triplex FTPs are summarized in Table 4-3.

Results have been tabulated for the baseline AIPS for ALS avionics architecture as

well as several variations on the baseline. The baseline architecture, as described earlier,

consists of a core FTP that performs all the non-propulsion functions and a dedicated

propulsion control FrP for each engine. The baseline vehicle design from Martin Marietta

consists of 17 engines. Therefore the baseline architecture consists of 18 FTPs. The

number of FTPs in the avionics architecture is denoted by the term Critical Minimum

Complement. Results have been tabulated for a CMC of 1, 2, 3, and 4, in addition to the

baseline case of 18 FTPs. This allows one to examine the avionics availability and

reliability only for a subset of functions such as the non-propulsion functions which require

only 1 FTP to be operational. Furthermore, if a group of engines is allocated to a single

FTP, as suggested in the earlier discussion on architecture synthesis, or the number of

engines is fewer than 17, then new RMA numbers can be quickly obtained from these

tables.

The tables present the per cent Launch Availability of the avionics architecture, for a

specified complement of FTPs, in column 1. The Launch Availability is defined to be the

probability of the CMC of FTPs being in a fault masking state at the end of a week of

4-7

operation on the launch pad. An FTP is capable of masking faults if it has at least three

operational channels. The next column gives the probability of failure of the ALS avionics

during the powered flight or the boost phase. A failure of any one FTP out of the CMC is

considered a total avionics failure. Finally, the last column gives the same failure

probability for the on-orbit phase of ALS.

The avionics reliability for the whole ALS mission, i.e., the boost phase plus on-

orbit phase, R(ALS), can be calculated from the failure probabilities of the two mission

phases, PF(Boost) and PF(Orbit), using the following equation:

R(ALS) = { 1-PF(Boost)} * I 1-PF(Orbit)}.

However, for small failure probabilities, as is the case for the ALS mission, the

mission failure probability is approximately just the sum of the failure probabilities for each

mission phase. That is,

PF(ALS) = PF(Boost) + PF(Orbit).

The RMA models and their underlying assumptions are described in detail in

Section 4 of [1]. However, it is useful to briefly recapitulate some of the important

assumptions here. These are as follows.

• The launch pad operations last 200 hours (approximately 1 week), the boost

phase lasts 0.2 hours (12 minutes), and the on-orbit phase lasts 50 hours.

• Failure of any single module in an FTP channel results in the loss of that

channel.

• In the boost phase, no recovery is attempted from transient faults, i.e.,

transients are treated as permanent faults.

• On-orbit, transient failure recovery is performed by the FTP in the background

without suspending applications tasks.

• Transient faults occur 10 times more frequently than permanent faults.

• Permanent faults occur at a rate dependent on the mission phase. The

permanent failure rates for the AIPS/ALS modules are as summarized in Tables

3-11, 3-12, and 3-13.

• The average recovery time from a fault is assumed to be 20 milliseconds.

• Quad and triplex fault recovery coverages are assumed to be 1.0. Duplex fault

coverage is assumed to be 0.9.

4-8

CriticalMinimum LaunchAvailability Failure Probability Failure Probability

Complement (Boost Phase) (On-orbit) .

1 99.88% 8.90* 10 -9 5.33* 10 .7

2 99.76% 1.78" 10 .8 1.07" 10 .6

3 99.64% 2.67"10 .8 1.60"10 .6

4 99.52% 3.56* 10 .8 2.13" 10 .6

18 97.86% 1.60" 10 -7 9.59* 10 .6

Table 4-2. Availability and Reliability of ALS Avionics (Quad FTPs)

The following conclusions can be drawn from the analytical evaluation of the AIPS

for ALS avionics architecture. For the baseline architecture, consisting of 18 FTPs, it is

necessary to provide a quadruple level of redundancy, in order to meet the 95% launch

availability requirement. The baseline architecture is expected to have 97.86% availability.

This configuration will also meet the mission reliability goals. Specifically, the mission

probability of failure is expected to be 1.6"10 "7 for the boost phase, 9.59"10 -6 for an

extended on-orbit phase (50 hours), and a total of 9.75* l0 -6 for the whole ALS mission.

This exceeds the goal of 10 -5 just slightly.

Critical Minimum Launch Availability Failure Probability Failure Probability

Complement (Boost Phase) (On-orbit)

1 96.20% 1.67" 10 .7 1.01 * 10 .5

2 92.50% 3.34* 10 .7 2.02* 10 .5

3 89.0% 5.01 * 10 .7 3.03 * 10 .5

4 85.6% 6.68"10 .7 4.04"10 .5

18 49.8% 3.01" 10 -6 1.82" 10 -4

Table 4.3. Availability and Reliability of ALS Avionics (Triplex FTPs)

The contributions to the unavailability and unreliability come predominantly from

the propulsion avionics since 17 out of the 18 FTPs are for engine control. The availability

of the non-propulsion avionics, which consist of just 1 FTP, is 99.88% for a quad and

96.2% for a triplex FTP. Similarly, the mission loss probability, attributable to non-

4-9

propulsion avionics, is 5.42"10 -7 for the quad FTP. Evidently, one needs to reexamine

the requirement of dedicating a controller to each engine. If, for example, an FTP was

configured to control 4 engines, which it is capable of doing based on the performance

projections, only 4 ETPs will be necessary to control 16 engines. This would reduce the

probability of mission failure due to a failure of propulsion avionics to 2.16"10 -6 using

quad FTPs. The launch availability would improve to 99.52%.

The ALS vehicle and engine designers should seriously examine the option of

integrating engine controllers outside the engine and with the core avionics. This would

not only improve the overall ALS reliability and availability, as demonstrated above, but

would also result in reduced weight, volume, power and cost.

4.5 Architecture Summary and Conclusions

A preliminary AIPS-based fault tolerant computer system architecture has been

configured to meet the ALS performance, reliability, and availability requirements. A

single quadruply redundant AIPS Fault Tolerant Processor, the core FTP, will perform all

the non-propulsion functions required in the ALS. Additionally, there will be a propulsion

control FTP dedicated to each engine. The core FTP will access the guidance, control,

navigation and other sensors and actuators on one redundant I/O network. Each of the

engine control FTPs will access engine sensors and actuators on a dedicated I/O network.

The core FTP and all of the engine control FIT's will be connected by a fault-masking triply

redundant intercomputer network.

For short ALS missions, lasting an hour or less, it will not be necessary to

reconfigure the FTPs or the I/O and IC networks. Redundant hardware would provide

sufficient fault masking capability to meet the ALS reliability requirement. However, for

longer ALS missions, lasting 1 hour to 48 hours, it will be necessary to re-integrate FTP

channels affected by transient faults and to reconfigure the I/O and IC networks. The

performance projections show that these in-flight reconfigurations can be accomplished

without suspending any of the ALS applications tasks. The reconfigurability of the

networks is also intended to obviate expensive launch pad repairs.

The AIPS for ALS architecture defined here is preliminary in nature but shows that

the ALS performance and reliability requirements can be met by the AIPS hardware and

software building blocks that are built using the state-of-the-art technology available in the

1992-93 time frame. The level of detail in the architecture definition reflects the level of

detail available in the ALS requirements. As the avionics requirements are refined, the

architecture can also be refined as well as defined in greater detail with the help of analysis

and simulation tools. For example, the functions in the core FTP need to be allocated to the

4-10

computationalprocessorandtheI/O processor.Thisrequiresa moredetailedenumeration

of interfunction communication requirements and I/O communication requirements. Also,

no effort was expended on defining the detailed I/O architecture. This requires as inputs

the sensor details such as the number and type of sensors, their failure rates, and so on.

This information can be used to define redundancy levels of sensors and allocate sensors to

different redundant layers of the I/O network.

Several variations on the baseline architecture presented here are also possible and

should be modeled and analyzed. These include allocating several engines to one

propulsion control FTP, investigating the effects of launch with failures, and using

authentication for the I/O and IC networks.

4-11

4-12

5.0 IMPACT OF AIPS/ALS ARCHITECTURE ON ALS COST

5.1 Introduction

The main motivation of the National Aeronautics and Space Administration and the

Department of Defense in sponsoring its Advanced Launch System program is to realize a

substantial reduction in the recurring launch costs over the present launch systems. The

avionics architecture selected for the ALS will have an impact on the recurring launch costs.

However, the impact is not limited to the cost of the avionics system itself or its cost in

terms of the weight or physical displacement it will add to the vehicle. Being mission

critical, the reliability of the avionics suite will directly influence vehicle failure.

Obviously, a failure of the vehicle can incur very sizable costs. A failure while awaiting

launch on the launch pad may require repair and incur the cost of the repair and the cost

resulting from interrupting and delaying the launch. A failure during launch can cause a

loss of the vehicle and of the payload it is carrying. If fault tolerance is also an attribute of

the avionics suite, there is the possibility of exploiting this trait operationally to reduce

costs. Therefore, to address the requirement of reducing recurring launch costs, this

characteristic of the avionics suite needs to be accurately assessed as it is being designed

and developed. In this way, when design freedom exists, choices can be made which will

ultimately reduce launch costs.

The primary objective of this study is to demonstrate a methodology for

investigating the impact of the avionics suite on the recurring launch cost of the ALS. All

the factors influencing cost are investigated, however, this study focuses on the

methodology for quantifying the contribution to the recurring launch costs due to the

reliability and availability characteristics of the avionics suite.

Two secondary objectives are pursued. The flu'st is to evaluate the impact of using

an AIPS Fault Tolerant Processor (FTP) as the avionics computer on the recurring launch

cost of the ALS. The second objective is to investigate the effect of a number of design and

operational parameters on the recurring launch cost of the ALS.

5.2 Problem Definition

5.2.1 General Description

The anticipated mission of the ALS is to launch payloads into orbit about the earth.

For the purpose of this study, the mission is considered to have two separate phases. The

first phase of the mission begins when the vehicle is delivered to the launch site, assembled

and then parked on the launch pad. While on pad the vehicle would undergo testing, be

loaded with fuel (if necessary), have its status monitored and undergo the other normal

preflight activities associated with an orbital rocket launch. The vehicle would probably

remain on the pad for a relatively long length of time. The vehicle would most likely be

parked a week or more before the scheduled launch date. When the scheduled launch time

5-1

PRECEDING PAGE BLANK NOT FILMED

did arrive,ifthevehicleisjudged tobc fitfor launch,the engineswould be ignitedand the

vehiclelaunched. Launching the vehiclewould end the Rrstphase and begin the second.

The second phase encompasses the time from launch through ascentuntilthe payload is

deliveredtoorbit.The time of the launch/ascentphase would bc comparativelyshort-- on

theorder of minutes or hours.

While parked on the pad, the avionics system would be monitored. The Vehicle

Health Monitoring System (VHMS) isassumed to bca passive subsystem of the ALS

whose functionincludesrelayingtheoperationalstatusof theavionicssystem totheground

operationscenter.The ground operationscenterhas the abilityto controlthe progress of

the countdown to launch. So, based on the known operationalstatusof the avionics

system, the ground operations center may proceed with the countdown sexluenccor

interruptthe launch beforeignitionof theengines.

The bulk of the avionics suite would be carried to orbit along with the payload.

Since the avionics suite includes the sensors, actuators and other equipment which would

be located on the initial stages of the vehicle, parts of the system would be discarded as the

initial stages are separated and abandoned. However, it is assumed that the bulk of the

avionics suite -- including the avionics computer -- would be located in the f'mal stage and

brought to the delivery orbit of the payload.

Some other assumptions are made to limit the scope of this study. First, the

mission is assumed to be unmanned. The missions of the ALS may include manned

missions. However, associating a monetary cost with the loss of human life brings in

complications which detract from the objective of this study. (The issue should be

approached as a safety requirement for the vehicle and not a parameter which can be traded-

off against cost.) Second, the vehicle is assumed to be non-recoverable. Again, the ALS

may include recoverable subsystems. But, assuming the ALS to be non-recoverable

simplifies the analyses. Third, the ALS is presumed to have a high probability of mission

success.

5.2.2 Contributors to Cost

The contributors to the cost of the avionics suite are divided into three categories

the cost of the avionics system itself, the cost of its weight, and the cost of its unreliability.

The cost of the avionics system itself is subdivided into fixed and recurring costs. The

fixed costs are the design and development associated with producing the avionics suite,

exclusive of the components which will actually perform the mission. This includes the

development and construction of prototype, validation and verification testing, etc. -- any

costs incurred to produce the working design of the avionics system. The recurring costs

are the costs of the avionics suite directly related to the specific mission. That is, the actual

costs to manufacture the system and integrate it with the vehicle given that a validated

design exists. This includes the costs resulting from any design changes to the hardware or

software and any testing (acceptance, validation, etc.) which are mission specific.

5-2

Thesecondcategoryfor the cost of the avionics suite is the cost of weight. Since

the bulk of the avionics system rides with the payload all the way to orbit, it's weight

subtracts directly from the ALS payload lift capability. Therefore, a cost penalty is

associated with the weight of the avionics system.

The third category is the cost of unreliability. The cost of unreliability differs from

the other two costs in that the actual cost is contingent upon a failure occun'ing. Therefore

the cost will depend on a probabilistic event occurring -- a failure of one or more

components within the avionics suite.

The cost of unreliability is broken up into two subcategories which relate to when

the cost is incurred -- on the launch pad and during launch/ascent. The cost of unreliability

on the launch pad is derived from actions taken while the vehicle is on the launch pad

because of detected failures within the avionics suite. While the ALS sits on the pad

awaiting launch, a failure of a component in the avionics system can occur. If the failure is

detected then there is the option of taking some action. If the system is fault tolerant and

sufficient capability for launch still exists then a decision could be made to continue the

countdown. If sufficient capability for launch no longer exists or it is not desirable to

launch with the available configuration, then the countdown can be interrupted and the

failure repaired. Therefore, the cost of unreliability on the launch pad is identified to have

two contributors, the cost of interrupting the count-down and the actual cost of repairing or

replacing the failed component.

Failures of the avionics system occurring while the vehicle sits on the launch pad

may go undetected. The immediate effect is that no costs are incurred as a result of the f'trst

phase of the mission. However, these failures may manifest themselves at the time of

launch and would incur the same costs as catastrophic failures during the launch/ascent

phase.

The second subcategory of the cost of unreliability is the cost due to avionics

system failures during launch/ascent. The cost of a failure of the avionics suite during

ascent is the cost of the entire mission (avionics system, launch vehicle, payloads and

operational costs associated with the mission), the cost of downtime following the failure,

the cost of a post launch failure analysis, and less tangible costs such as the cost of launch

unavailability, the loss of user confidence, and damage to the national image. Note that the

failure modes leading to a vehicle failure during flight may include both avionics system

component failures during the flight and/or during the time on the launch pad.

5.2.3 Architecture Definitions

To demonstrate the applicability of the methodology, the architectures to be focused

on for the avionics suite should be typical of the systems utilized for this application.

However, if the systems being analyzed are very complex, the task of modeling them will

detract from the primary objective -- illustrating the methodology. Therefore, with the

5-3

intention of satisfying the primary objective in what is a limited study, the two architectures

investigated are defined as simplified versions of two potential candidates for the ALS

avionics.

The two generic architectures defined for the focus of this study are shown in

Figures 5-1 and 5-2, respectively. Architecture 1, shown in Figure 5-1, is an architecture

usually proposed for this type of system. Architecture 2 is presented in Figure 5-2 and is a

distilled version of an AIPS FTP. This permits a comparative evaluation of the impact to

the recurring launch cost of using an AIPS FTP as the avionics computer. More

comprehensive descriptions of the two defined architectures are in the following sections.

5.2.3.1 Architecture 1

Architecture 1 represents an elementary method of incorporating fault tolerance into

the avionics system. The three channels (Channel-l, Channel-2 and Channel-3) are

identical computers. Each channel individually processes the information from its

dedicated sensor and generates an output to control an actuator. (Note that in the actual

avionics system, each channel would receive data from many sources and generate outputs

to many other subsystems.) In this generic representation, each of the three sensors

(Sensor-1, Sensor-2 and Sensor-3) measures the same quantity. Therefore, in the absence

of failures each channel would ideally produce the same output. The outputs of the three

channels would then be voted at the actuator and a majority consensus would determine the

control of the actuator. That is, if the output of one channel was in error (because of a fault

in a sensor or actuator), two of the three channels would still be providing the correct

output. The Voting Actuator would ignore the incorrect output and follow the output of the

two valid channels.

A number of relevant attributes are assumed to be associated with Architecture 1.

These are listed below:

1. The replicated sensors are wired to different processing channels.

2. No sensor data is being exchanged between the channels.

3. The channels are asynchronous.

4. There is no fault masking of channel failures.

. No Fault Detection, Isolation and Reconfiguration 07DIR) is being done within

the avionics system; errors due to sensor or channel failures will not be

removed from the input to the voting actuator.

6. The VHMS monitors the health of all components.

5-4

Sensor-1

Sensor-2

Sensor-3

;I
;I

Channel- 1 v

Channel-2 v

Channel-3 v

Voting
Actuator

l Sensor-1

Sensor-2

Sensor-3

Figure 5-1. Architecture 1

To Channel-3

o C anne-1

Actuator-1

Actuator-2

Actuator-3

Figure 5-2. Architecture 2

Architecture 1 contains a single point of failure--the failure of the Voting Actuator.

Architecture 1 is a generic representation of a fault tolerant architecture typically proposed

for the avionics suite of this type of system. A single string system is replicated and some

element must arbitrate between the outputs of the strings. In this case, the Voting Actuator

acts as the arbitrator and represents a single point of failure for the system. If the Voting

Actuator is highly reliable and its potential failure is easily predictable (which are both

plausible properties for the Voting Actuator), then the redundancy within the architecture

can be expected to significantly contribute to the launch reliability of the avionics suite.

Note that the difference in the redundancy levels for the three functional groups (Sensors,

Computers and Actuator) does not preclude a balanced design with regard to the reliability

allocation for these groups. A balanced design balances the reliability budget allocated to

each of the distinguished functional groups, not the meansutilized to achieve that
reliability.

5.2.3.2 Architecture 2

Architecture 2 represents a very basic application of the AIPS technology into the

avionics system of the ALS. Channel-1, Channel-2 and Channel-3 represent the three

channels of a triplex FTP. Sensor-l, Sensor-2 and Sensor-3 are the same three sensors

used for Architecture 1. However, their outputs are now hard-wired to each channel of the

FTP. The replicated actuators (Actuator-I, Actuator-2 and Actuator-3) individually

perform the same function as the Voting Actuator in Architecture 1. However, they do no

voting of channel outputs. Only the output of one channel would be enabled to control

only one actuator at any one time.

The relevant attributes of Architecture 2 are listed below:

1. The replicated sensors are cross-strapped to all processing channels.

2. In the absence of sensor failures, mid-value selection of sensor data is

performed within the channels.

3. There is source congruency between channels.

4. There is micro-frame synchronization of the channels.

5. Frequent, exact comparisons of channel outputs and intermediate results are

performed in order to detect computational failures.

6. There is fault masking of channel failures.

7. Failed components are isolated from the control chain.

8. The health of all components are monitored by the FTP and relayed to the

VHMS.

The core FTP of the preliminary ALS avionics architecture is a quadruply redundant

AIPS FTP. The rational for defining Architecture 2 as a triplex FTP is to make it more

comparable to Architecture 1. Keeping the redundancy level similar to the more typical

architecture utilized for this type of application allows a cost comparison to be made

regarding the implementation of the redundancy and not just a more general comparison

between two architectures.

5.3 The Cost Model

The cost model is implemented as a number of spreadsheets in Microsoft® Excel

running on an Apple® Macintosh TM computer 1. The use of a spreadsheet program allows

the easy intermingling of a large number of factors in a tractable manner. This proved to be

1Specifically, version 1.5 of Microsoft® Excel is utilized and all of the results shown in this study are

generated on an Apple® Macintosh Ilci with version 6.1A of the Finder file and version 6.0.4 of the
System file.

5-6

very advantageousin the development of the cost model. In total, eleven linked

spreadsheets comprise the cost model. Appendix A presents the highest level spreadsheet

for the baseline run. The highest level spreadsheet provides the interface of the cost model

it contains the alterable input parameters and provides the more relevant outputs of the

model.

To facilitate discussion of the cost model, the organization of the spreadsheet of

Appendix A is followed. Subsections 5.3.1 through 5.3.5 of this report correlate direcdy

with Sections I through V of the spreadsheet and are referred to as the cost model is

presented.

5.3.1 System Parameters

The first section of the spreadsheet shown in Appendix A lists the alterable input

parameters of the cost model. The individual entries are discussed in the sections which

follow. The general subcategories are discussed here.

The first four subcategories list the relevant parameters of the avionics suite and

then the ALS from an increasingly wider prospective. The "Component Attributes"

subcategory presents the relevant parameters pertaining to the components of the

architectures presented in Section 5.2.3. The "Avionics System Attributes" subcategory

includes the cost parameters related to the entirety of the avionics suite for each of the two

architectures. Subcategory C, "Vehicle Attributes", contains the parameters associated with

the vehicle which impact the cost model. The "Fleet Attributes" contains only one

parameter: the number of vehicles in the fleet.

The fifth subcategory, "Operational Attributes" lists the operational parameters

which impact the cost model. These are divided between two further subcategories -- "On

the Pad" and "During Launch/Ascent". The individual parameters are discussed in Section

5.3.4.

5.3.2 Cost of System

The cost of the avionics system calculated in Section II of the spreadsheet is the cost

per vehicle to design, develop and construct a fleet of vehicles. It is calculated from

Csystem = Cckl + (_Ccornponent) + Cconstruction
n (5-1)

This states that the cost of the avionics system, C-system, is the sum of three terms. The first

term is the Design and Development Cost, Cdd, divided by the Number of Vehicles in the

Fleet, n. Cdd represents all the fixed costs of the system. Y_Ccomponent and Cconstruction

are the recurring costs. _Ccomponent is the sum of the costs of the individual components

5-7

and Cconstruction is all of the other recurring costs. Cconstruction is taken from the

Construction Cost (excluding cost of parts) entry of Section I.B of the spreadsheet.

5.3.3 Cost of Launch Weight

Since the bulk of the avionics system rides with the payload all the way to orbit, it's

weight subtracts directly from the ALS payload lift capability. Section III of the

spreadsheet associates a cost penalty with this weight. The cost of the avionics system

launch weight, Cweight, is obtained from

Cweight = W * Xpayload (5-2)

where W is the weight of the avionics system (the sum of the weights of the components

and the Weight of the Integration Hardware listed in the cost spreadsheet) and Xpayload is

the Payload Launch Cost. The payload launch cost is the estimated cost for delivering

payloads to the ALS parking orbit.

5.3.4 Cost of Unreliability

Section IV of the spreadsheet computes the costs incurred as a result of the

unreliability of the avionics system. The costs due to the unreliability differ from the two

previous categories in that the cost does not materialize until a probabilistic event occurs

a failure or sequence of failures which results in either a repair action being taken or a

mission failure. Therefore, the cost associated with a repair action or of a failed mission

must be weighted by the probability of the event occurring. This necessitates modeling the

reliability of the avionics system.

The cost of the unreliability of the avionics system is conceptually expressed in the

equation

where
Cunreliability = PrCr + Pfff

Cunreliability = Cost of unreliability

(5-3)

Pr = Probability that a repair action is taken

Cr = Cost associated with repair action

Pf = Probability that a mission fails

Cf - Cost associated with a failed mission.

The fh'st term of Equation (5-3) accounts for the cost of unreliability while on the launch

pad. The second term is the cost of unreliability during launch. Markov models are

5-8

utilized to calculatethe probabilitiesof Pr andPf. Thecostsof Cr and Cf are calculated

directly from the cost entries in Section I of the spreadsheet.

The models utilized to calculate the reliability of Architectures 1 and 2 are based on

a single mission scenario. The mission begins when the vehicle is rolled out to the launch

pad. It then sits on the pad for a specified number of days. If no repair action is taken, the

engines are ignited and the vehicle launched. The vehicle would then ascend from the

launch pad to the orbit the payload is to be delivered to. The mission ends successfully

when the payload is deposited into orbit.

Three outcomes are possible from this mission scenario. The In'st is the successful

completion of the mission. The second is that a decision is made to interrupt the

countdown to perform a repair. The third is that a mission failure occurs and the vehicle

and payload are lost. Note that this is slightly different from the actual mission whereby

the mission continues after a repair action is taken. However, if in the actual mission the

probability of two or more repair actions taking place is much smaller than the probability

of only one occurring, then the second and third outcomes of the mission scenario can be

used as calculations of Pr and Pf, respectively.

The cost of unreliability is dependent on the repair strategy for detected failures

within the avionics system. While the vehicle sits on the launch pad, following each

detected failure of a component, a decision must be made as to whether or not to interrupt

the countdown and repair the failure (or failures). Even for the simple architectures defined

in this study many strategies are possible. The most viable ones are defined here. For

Architecture 1, the analyzed repair strategies are:

1. Repair when the first failure is detected. All components must be declared

operational for the launch to occur.

. Delay repair until either the failure of the Voting Actuator or both Control

Chains is detected. (A Channel and its dedicated Sensor are referred to as a

Control Chain. A failure of either the Channel or its dedicated Sensor results in

the failure of the Control Chain.) The vehicle is permitted to be launched with

the detected failure of one Control Chain.

3. No repairs are performed. The vehicle is launched independent of the

component failures detected while it resides on the pad.

For Architecture 2, the analyzed repair strategies are:

1. Repair when the first failure is detected.

2. Delay repair until either the failure of 2 Sensors or 1 Channel or 2 Actuators is

detected. The vehicle is permitted to be launched with only 2 Sensors and/or 2

5-9

Actuatorsdetectedas operational. All 3 Channelsmust still bedetectedas
operationalto allowthelaunch.

3. Delayrepairuntil eitherthefailureof 2 Sensorsor 2 Channelsor2 Actuatorsis
detected.

4. Delay repair until either the failure of 3 Sensors or 2 Channels or 3 Actuators is

detected.

5. No repairs are performed.

The calculation of the two terms of Equation (5-3) are respectively performed in

Sections IV.A and IV.B of the spreadsheet and discussed in the two sections which follow.

Section IV.C of the spreadsheet sums these two terms and reports the total cost due to the

unreliability of the avionics system.

5.3.4.1 On the Launch Pad

Section IV.A of the spreadsheet computes the cost of unreliability on the pad for the

two architectures analyzed. The first subsection contains the "Intermediate Calculations".

The "Intermediate Calculations" are the adjustments made to the failure rates and the

calculation of the cost of interrupting the countdown. The second subsection calculates

bounds for the cost of unreliability on the pad.

The base failure rates are adjusted to account for the environment of the launch pad

and the fact that the avionics system may not be powered up continually while the vehicle

sits on the pad. The expression

_,effective = XE

t),al ooi

ton) + 1tore

_-base

(5-4)

is used to adjust each respective base failure rate kbase tO provide the effective failure rate

_keffective- All of the parameters are taken directly from the Section I.E. 1 of the spreadsheet.

nE is the Pad Environmental Factor. (ton/toff) and (kon/_ff) are the Ratio of Hours On/Off

and On/Off Failure Rate Scale Factor, respectively.

The expression to calculate the cost of interrupting the countdown is taken from

Reference 3. The Cost of Interrupting the Countdown, Cint_rupt, is calculated from

= {rd+ 1)Y
(S- 1) f5-5)

5-10

For theALS, it is assumedthatrepairsarenot madeon thepad. If repairsareneeded,the
entirevehicle is broughtbackto thevehicleassemblyareafor rework. TheRepairTime,
Td, reflects the time to move the entire vehicle from the pad to the assembly building, where

the failed unit is replaced, and back to the pad. The total lost time is computed as this

Repair Time plus the time which had already been invested in the countdown when the

failure occurred, To. Once a vehicle comes back for repair, it is assumed that surge mode is

activated until the original launch schedule is reestablished. The Surge Work Rate, S, is a

scale factor which represents the increase in the nominal work rate during surge mode. The

Overtime Cost, X, is also a scale factor which represents the increase in the nominal

Operating Cost, Y, during surge mode.

The cost associated with a repair action is the Cost of Interrupting the Countdown

plus the possible cost of replacing the defective components. Therefore, this cost is

dependent on the failure mode which led to it. So, the first term of Equation (5-3), the cost

of unreliability while on the launch pad (Cp_), is more accurately expressed as

Cpad = 2 Pr'iCr'i

i (5-6)

where Pr.i is the probability of a specific repair action occurring and Cr,i is the cost of this

repair action. Sections 5.3.4.1.1 and 5.3.4.1.2 present the Markov models utilized to

calculate the probability of occurrence of the repair actions and their associated costs for

Architectures 1 and 2, respectively.

5.3.4.1.1 Architecture 1

Figure 5-3 presents the Markov model for Architecture 1 for the pad phase of the

mission. Table 1 describes the states defined by Figure 5-3. In Figure 3, _, _ and _-a are

the effective failure rates of each Sensor, Channel and Actuator, respectively, t_ is the

VHMS Detection and Interruption Rate and co is the VHMS Self-Test Coverage

Probability.

The Markov model shown in Figure 5-3 is utilized to generate the cost of

unreliability on the pad for all of the defined repairs strategies for Architecture 1. Enough

resolution is incorporated into the model to also make it compatible with the Markov model

used for the second phase of the mission. State 1 represents the initial state of the avionics

system -- no failures of its components. States 2 and 3 individually represent the

occurrence of a first fault in the avionics system. In the case of a fault in one of the Control

Chains (State 2), two ensuing events can happen. The VHMS could detect the failure

(State 4) or a near coincidental fault of a second component occurs before this detection can

take place (State 5). Note that it is conservatively assumed that the VHMS is unable to

interpret coincidental faults and, at worst, detects neither fault -- resulting in an uncovered

failure of a component. The transitions emanating from State 3 are analogous to those from

5-11

State 4, with the exception that a detection probability, co, is now associated with the

detection of the Actuator fault. This is because the Actuator is a simplex component and it

is assumed the probability of detecting its failure is less than one.

State 4 represents the failure configuration with one Control Chain providing

incorrect commands to the Voting Actuator. Architecture 1 continues to operate properly in

this failure mode. However, the occurrence of another fault will fail the avionics system.

The reason for distinguishing between States 7, 8, 9 and 10 is to discriminate between

uncovered and covered failures of the avionics system.

For the first defined repair strategy for Architecture 1 -- repair when the first failure

is detected -- States 4, 6, 7, 8, 9 and 10 are the states which represent a repair action has

been taken. States 1 and 2 are modes from which a successful launch would occur. Being

in States 3 or 5 would result in a system loss when the vehicle is launched. For this repair

strategy, the cost of unreliability on the pad is

Cpad = P6C6 + P4,7,8,9.10C4.7.8,9.10 (5-7)

where P6 and P4,7,8,9,10 are the probabilities of being in State 6 and States 4, 7, 8, 9 or 10,

respectively. C6 and C4,7,8.9,10 are the respective costs to repair from these states. A

distinction is made between State 6 and the States 4, 7, 8, 9 and 10 because different failure

modes triggered the repair actions and greater modeling accuracy can be attained by

distinguishing between the costs of these repair actions.

State

1

2

3

4

5

6

7

8

9

10

Description

No Failures

Fault in one Control Chain

Fault in Actuator

Detected fault in one Control Chain

Undetected failure of one or more components

Detected failure of Actuator

Fault in one of two remaining Control Chains

Fault in Actuator following previous detected failure

Detected failure preventing safe launch

Undetected failure of one or more components

Table 5-1. States of Architecture 1 Pad Markov Model

5-12

The "First Detected Failure" entry of Section II.A.2.a is calculated directly from

Equation (5-7). P6 and Pa,7,g,9,10 are obtained by solving the Markov model for

Architecture 1. The bounds result because the defective components may or may not need

to be replaced. So, C6 and C4,7,8,9,10 range between Cinterrupt and Cintcrrupt plus the

maximum number of components which may have to be replaced. The entries for the other

two repair strategies are calculated analogously.

5.3.4.1.2 Architecture 2

The Pad Unreliability Cost for Architecture 2 is calculated by the same methodology

used for Architecture 1. However, Architecture 2 is divided up into three independent

Markov models. One model is constructed for the Sensors, one for the FTP and one for

the Actuators. The three models are then combined to produce the probabilities of interest.

Figure 5-4 and Table 5-2 present the Markov model for FTP. Table 5-3 defines the

symbols in Table 5-2. This model is based on Markov models used for previous reliability

studies of the FTP.

Note that a unique structure is recognizable in the FTP Markov model. Starting at

State 1, the state of the FTP with no failures of its components, a fault can occur in one of

the three components (Processor, Memory and Interstage) which are distinguished in each

of its three channels. These faults can be either permanent or transient and are separated

among States 2 through 7. From these states, one of two events can occur. The first event

is the FDIR processes could detect, isolate and reconfigure by eliminating the appropriate

channel if it is a permanent fault (State 8) or resynchronize the affected channel if it is a

transient fault (return to State 1). The second event is that a second, near coincident fault

can occur before the FDIR processes are completed and the result is conservatively

assumed to be an uncovered failure (State 9).

From State 8, as in State 1, a fault can occur in one of the three components in each

of the remaining channels. These are divided among States 10, 12, 14, 16, 18 and 20.

Additional resolution is incorporated at this failure level of the model to separate between

the detection process and the other processes of FDIR. Since the coverage probability at

this failure level is most likely to be dominated by the isolation and reconfiguration

processes, separating the detection processes for the respective faults yields a more accurate

model. The correct detection of these faults is modeled, respectively, as State 11, 13, 15,

17, 19 and 21. Note that there is a distinction between a missed detection (State 24) and an

incorrect isolation or reconfiguration (State 23). State 22 represents the FTP correcdy

operating with a single channel. The occurrence of the next fault fails the FTP. However,

if the fault is covered (State 25) the launch may be interrupted, whereas, if it is uncovered

(State 26) the launch may result in a mission failure.

5-13

Given thestructureof theFTPMarkovmodeland the fact that the rates of the FDIR

processes are much faster than the component failure rates, it is possible to reduce the

model to the form shown in Figure 5-5. Appendix B discusses the reduction techniques

utilized to generate the time invariant transition rates of Figure 5-5. The operational states

of the FTP Markov model are reduced to States 1R (all three channels operational), 2 R (only

two of the three channels operational) and 3 R (only one of the three channels operational).

States 9, 23, 24, 25, and 26 are these same states in Figure 5-4.

The Markov models for the Sensors and the Actuators are of the same form as the

FTP Markov model, but are smaller in size. A single, permanent failure rate is associated

with each Sensor (or Actuator). Their Markov models would appear as Figure 5-4 minus

States 2 through 6 and 10 through 19 with the parameters for the Sensors (or Actuators)

replacing those for the Interstages. These models are then reduced to the form shown in

Figure 5-5 with the techniques of Appendix B.

The three independent Markov models are combined to generate the entries of

Section IV.A.2.b of the spreadsheet shown in Appendix A. For each of the defined repair

strategies, the probabilities of the appropriate states of each of the three models are

combined to calculate the bounds of the probabilities of the repair actions and weighted by

the respective costs of these actions as in Equation (5-6).

Two points should be noted with regard to the input System Parameters

spreadsheet. None of the repair strategies invoke a repair action when all three Channels

are detected as failed. So, consequently, there are no Simplex Coverage Probability for

any of the Channel components. Also, the spreadsheet only allows a single FDIR Rate

(Recovery Rate) to be input for each type of component failure. The rates for the detection

and isolation and recovery processes are conservatively assumed to be the FDIR Rate

(Recovery Rate).

5-14

Figure 5-3. Pad Markov Model for Architecture 1

5-15

OF 1F 2F 3F

Figure 5-4. Triplex FTP Markov Model

5-16

From State _ To State

1----)2

1---)3

1---)4

1---)5

1---)6

1---)7

2--ol

2 ---_ 9

3--08

3-09

4-0-ol

4-09

5-0-08

5-0--)9

6 ---_ 1

6--->9

7-08

7-0--)9

8-010

8-0-o12

8--->14

8--->16

8-0->18

8-0-020

10-0-o 11

10 -0 24

11-0-o8

11 -0-023

12 -0 13

12 -024

13 --022

Transition Rate

3JLpt

3_,pp

3kmt

3_Lmp

3_,it

3_.ip

Ppt

2(2_.pt + gpp) + 3(JLmt + _mp) + 3(kit + JLiv)

Ppp

2(_,pt + J_,pp) + 3(_mt + _-mp) + 3(_.it + Jkip)

Pint

3(_.pt + _pp) + 2(_mt + JLmp) + 3(_it + _ip)

Pmp

3(/Lpt + _.pp) + 2(_.mt + JLmp) + 3(_it + _ip)

Pit

3(_pt + J_pp) + 3(_mt + _mp) + 2(_it + JLip)

Pip

3(_pt + _pp) + 3(_mt + _.mp) + 2(_it + _ip)

2_.pt

2_.pp

2_

2_.mp

2_.it

2_ip

_pt

(_'pt + _Lpp) + 2(Xmt + Xmp) + 2(J_it + _,ip)

Cpd_pt

(1 - Clxt)Ypt + (_-pt + Lpp) + 2(_mt + _Lmp) + 2(JLit + _ip)

_pp

(_-pt + _Lpp) + 2(_.mt + Jk,mp) + 2(_,it + JLip)

Cpd'Ypp

Table 5-2. Transition Rates for FTP Markov Model

5-17

FromState_ To State

13_23
14 ----)15
14.--,24
15--)8
15 ---)23
16_ 17
16 ----)24
17 ---->22
17 ---)23
18 ---)19
18 ---->24
19--)8
19 ----)23
20 ---_21
20 ---)24
21 .-->22
21 --->23
22 ---)25

22 --_26

TransitionRate

(1 - Cpd)'l(pp + (_pt + _pp) + 2(2Lint + _mp) + 2(kit + _ip)

_mt

2(gpt + _,pp) + (;Lint + grap) + 2(_-it + Kip)

Cmd_mt

(l - Cmd)_/mt + 2(gpt + XVp) + (gmt + Z,nap) + 2(Kit + _'ip)

_mp

2(gpt + Kpp) + (_.mt + Kmp) + 2(_,it + _p)

C-_ndYmp

(I - Cmd)Tmp + 2(_pt + _,pp) + (_,mt + _mp) + 2(_.it + _-ip)

_it

2(_Lpt + _,pp) + 2(_-mt + _,mp) + (_-it + _,ip)

Cid_it

(| - Cid)_/it + 2(_.pt + _pp) + 2(_.mt + _mp) + (_it + _.ip)

_ip

2(Kpt + _,pp) + 2(_Lmt + Kmp) + (kit + Kip)

Cid_ip

(1 - Cid)'Yip + 2(Kpt + Kpp) + 2(Kmt + _Lmp) + (Kit + _.ip)

Cps(_pt + Kpp) + Cms(_.mt + Kmp) + Cis(Kit + Kip)

(1 - Cps)(_bpt + _kgp) + (1 - Cms)(_.mt + _Lmp)

+ (1 - Cis)(Kit + Kip)

Table 5.2. Transition Rates for FTP Markov Model (Cont.)

5-18

Symbol

_.pt

_Lpp

_-mp

kit

_.ip

Ppt

Dpp

Pint

Prop

Pit

Pip

Spt

Spp

Smt

Smp

Sit

Sip

_'p,

 'pp
Ymt

Ymp

%

"_ip

cr_
Cr_

Cid

Cps

Cms

Cis

Description

Transient Processor failure rate

Permanent Processor failure rate

Transient Memory failure rate

Permanent Memory failure rate

Transient Interstage failure rate

Permanent Interstage failure rate

Transient Processor recovery rate

Permanent Processor recovery rate

Transient Memory recovery rate

Permanent Memory recovery rate

Transient Interstage recovery rate

Permanent Interstage recovery rate

Transient Processor detection rate

Permanent Processor detection rate

Transient Memory detection rate

Permanent Memory detection rate

Transient Interstage detection rate

Permanent Interstage detection rate

Transient Processor isolation and reconfiguration rate

Permanent Processor isolation and reconfiguration rate

Transient Memory isolation and reconfiguration rate

Permanent Memory isolation and reconfiguration rate

Transient Interstage isolation and reconfiguration rate

Permanent Interstage isolation and reconfiguration rate

Duplex coverage probability of Processor failure

Duplex coverage probability of Memory failure

Duplex coverage probability of Interstage failure

Simplex coverage probability of Processor failure

Simplex coverage probability of Memory failure

Simplex coverage probability of Interstage failure

Table 5-3. Symbol Definitions for FTP Markov Model

5-19

OF 1F 2F 3F
• II

b

Figure 5-5. Reduced Triplex FTP Markov Model

5-20

5.3.4.2 During Launch and Flight

Section IV.B of the spreadsheet computes the cost of unreliability from avionics

system failures during the launch and flight of the vehicle for each of the investigated repair

strategies. The ftrst subsection contains the "Intermediate Calculations". The "Intermediate

Calculations" axe the cost associated with a mission failure and the adjustments made to the

failure rates. The second subsection of the spreadsheet calculates the bounds for the cost of

unreliability during launch and flight.

The costs associated with the failure of the avionics system during ascent are

discussed in Section 5.2.2. For the purposes of this study, this cost (Cf in Equation (5-3))

is limited to the cost of the avionics system, the launch vehicle, payloads and operational

costs associated with the mission. It is calculated in the spreadsheet directly from

Cf = Csystem + Wpayload * Xpayload + %ayload (5-8)

where Csystem is the cost of the avionics system itself (calculated in Equation (5-1));

Wpayload is the Total Payload Weight; Xpayload is Payload Launch Cost; Cpayload is the

Payload Value.

The base failure rates are adjusted to account for the environment of the

launch/ascent, as was done for the on pad phase of the mission. However, for this phase

of the mission the avionics system is assumed to be powered up for its entirety. So, the

relation used to adjust the base failure rates becomes

_-effective = _E_-base (5-9)

where nE is now the Launch Environmental Factor.

Sections 5.3.4.2.1 and 5.3.4.2.2 discuss the Markov models utilized to calculate

the probability that a mission failure occurs in order to generate the cost of unreliability

during launch.

5.3.4.2.1 Architecture 1

Figure 5-6 shows the Markov model for the launch/flight phase of the mission.

Table 4 describes the states defined by Figure 5-6. During launch it is no longer possible

to interrupt the countdown to repair failed equipment within the avionics system.

Therefore, the VHMS no longer has an impact on the unreliability. Hence, the model

depicted in Figure 5-3 collapses into the first 4 states of the Launch/Flight Markov model.

State 5 accounts for the probability that a repair action is undertaken during the on pad

phase of the mission.

5-21

Theinitial probabilitiesof thestatesof theLaunch/FlightMarkovmodelarederived
from theprobabilitiesof thestatesof thePadMarkovmodelat theendof theTime onPad.
Thedistributionisdependenton therepairstrategy.For example,for thestrategywhich is
to repairon thefirst detectedfailure the initial probabilitiesof theLaunch/FlightMarkov
modelareaslistedin Table5-5. Theinitial probabilitiesfor theothertwo repairstrategies
areanalogouslymade.

Section IV.B.2.a of the spreadsheet calculates the Launch/Flight unreliability cost

of Architecture 1. The Launch/Flight Markov model is solved using the initial conditions

for each of the repair strategies. The sum of the probabilities in States 3 and 4 at the end of

the Flight Time is Pf. Cf has been previously calculated. Therefore, Launch/Flight

unreliability cost is calculated according to the second term of Equation (5-3).

OF 1F
II • i il li

2F

Figure 5-6. Launch/Flight

@
Markov Model for Architecture 1

5-22

State

1

2

3

4

5

Description

No failures

Fault in one Control Chain

Fault in Actuator, System failure

System failure

Countdown interrupted to perform a repair

Table 5-4. States of Architecture 1 Launch Markov Model

State

1

2

3

4

5

Initial Probability is Probability at End of Time On

Pad of Listed States of Pad Markov Model

1

2

3

5

4,6,7,8,9,10

Table 5-5. Initial Probabilities of Launch/Flight Markov Model for

First Detected Failure Repair Strategy of Architecture 1

5.3.4.2.2 Architecture 2

The Launch Unreliability Cost for Architecture 2 is calculated according to the same

methodology used for Architecture 1. The three Markov models used to calculate the Pad

Unreliability Cost for Architecture 2 are modified slightly to model the cost of unreliability

during the launch/flight phase of the mission. An additional state, analogous to State 5 of

5-23

theLaunch/FlightMarkovmodel for Architecture1,is addedto eachof thethreeMarkov
modelsto accountfor theprobability that arepairactionis undertakenduring theon pad
phaseof the mission. It is also assumedthat during the launchphaseof the mission
channelswhich are removedby theFDIR processesbecauseof a transientfault arenot
broughtbackinto service.Therefore,in theFTPLaunch/Flightmodeltransientfaultsare
modeledaspermanentfaults.

As is donefor Architecture 1, the initial probabilities of the Launch/Flight Models

are derived from the probabilities of the states of the Pad Markov models at the end of the

Time on Pad. This redistribution of the probability is dependent on the repair strategy and

is done analogous to the example presented in Section 5.3.4.2.1.

Section IV.B.2.b of the spreadsheet calculates the Launch/Flight unreliability cost

of Architecture 2. The three Launch/Flight Markov models are solved using the initial

conditions for each of the repair strategies and combined to generated Pf. The entries of

Section IV.B.2.b of the spreadsheet evaluate Pf for the Flight Time and multiply it with the

previously calculated Cf to produce the Launch Unreliability Cost.

5.3.5 Total Cost

Section V of the spreadsheet adds the results of Sections II, III and IV and presents

the result for each of the repair strategies for the two architectures. This is the total cost for

the respective avionics system for the costs which are accounted for in this study.

5.4 Results

The cost model described here is used to predict the respective costs of the two

defined avionics systems -- Architecture 1 and Architecture 2. The Baseline System

Parameters are listed as the appropriate entries of Section I of the spreadsheet shown in

Appendix A. Sections II through V of the spreadsheet show the intermediate and final

results using the Baseline System Parameters.

The Baseline System Parameters of Section I are estimates based on currently

available technology and the current operational practices for commercial launch vehicles.

The Component Attributes are chosen under the assumption that Class B parts are utilized.

The Component Attributes and the Avionics System Attributes inputs for Architecture 2 are

selected based on past experience in applying the AIPS technology to similar systems. The

Component Attributes and the Avionics System Attributes inputs for Architecture 1 are

chosen so that they mimic those of Architecture 2. In this way, the differences in the

generated results from these two implementations are less obscured by the effect of the

individual pans. (In actuality, it is reasonable to use equivalent values between

Architectures 1 and 2 for the Component Attributes and the Avionics System Attributes.

As justification, refer to References 23 and 24 which report the experience with an

5-24

asynchronousarchitecturesimilar to Architecture1 for theFlight Control Systemof the
AFr/F- 16aircraft.)

TheBaselineSystemParametersof SubsectionsC, D andE are,again,reasonable
estimatesbasedon experience. The CSDL Report CSDL-R-2109 [15] and Military
HandbookMIL-HDBK-217E [16] servedassourcesfor manyof theOperationalAttributes
of SubsectionE.

SectionsII through V of the spreadsheetin Appendix A present the results

produced by the cost model for the Baseline System Parameters. 2 Figure 5-7 organizes the

more relevant data of the spreadsheet into a more enlightening form. The stacked bar chart

shows the total cost, and breaks down the sources which make up the total cost, for each of

the investigated repair strategies of the respective architectures. It is obvious that the total

cost varies significantly between each of the repair strategies for each architecture and

between the two architectures. These variations are mainly attributed to the cost of

unreliability. The cost of the avionics system itself and the cost of its launch weight are

independent of the repair strategy for any particular architecture and, relatively, do not vary

much between the two architectures. The cost of its launch weight for both architectures

represents a small contribution to the total cost.

The two classifications for the cost of unreliability (On the Launch Pad and During

Launch/Ascent) monotonically vary with regard to the repair strategy, but in different

directions. In going from the less tolerant repair strategy (First Detected Failure) to the

most tolerant repair strategy (No Repairs), the cost of unreliability on the launch pad

decreases, whereas the cost of unreliability during launch/ascent increases. For

Architecture 1, these two effects are minimized for the repair strategy which delays repair

until either the failure of the Voting Actuator or both Control Chains is detected. For

Architecture 2 the optimal repair strategy with regard to cost is to delay repair until either

the failure of 2 Sensors or 2 Channels or 2 Actuators is detected -- this results in a total

cost of about $362,000. Note that for both architectures, significant reductions in cost can

be obtained by permitting the vehicle to be launched with detected failures within the

avionics system.

Architecture 2 shows the greatest opportunity for minimizing cost. For the Baseline

System Parameters, Architecture 1 has a greater potential for a failure during launch than

Architecture 2. Figure 5-7 shows that, for Architecture 1, even when the policy is not to

allow launch with any detected failures, the total cost is dominated by mission failures

during launch. The only component of its total cost which can be reduced by allowing

launch with detected failures (Cost of Unreliability -- On the Pad) is relatively small.

2 Note that in the Adjusted Reliability Parameters of the FTP_Launch_Modei worksheet shown in Section
IV.B.I of the spreadsheet presented in Appendix A the transient failure rates of the FTP Channel
Components are indicated as 0. During the launch phase of the mission, transient failures of a Channel

have the same impact as permanent failures since a Channel will not be resynchronized once it is isolated
off-line. The transient failure rate is accounted for in the respective permanent failure rate of the worksheeL

5-25

Alternately, thecostof unreliability for Architecture 2 for the case which permits launch

only when there are no detected failures within the avionics system is dominated by the

unreliability on the pad. Therefore, potential exists for significantly reducing the total cost

by allowing launch to take place with some detected failures of its components. As pointed

out, the optimal repair strategy is to delay repair until either the failure of 2 Sensors or 2

Channels or 2 Actuators is detected. Note that the total cost of this repair strategy is

substantially less than that of any of those defined for Architecture 1.

4

_- 3
O
t_
c-
O

o 2

0

[] Cost of Unreliability - Launch

Cost of Unreliability - On the Pad

[] Cost of Launch Weight

.................... Cost of Avionics System

_ •
_ eq_ _ _._

• _ ._ . _

•..., eq t",l

¢'4 ¢"4 t'_

Figure 5-7. Baseline Results

5-26

Using thecomponentquality factorslisted in Table5-6, Figure 5-8 is generated
which showsthe sensitivityof total costto componentquality. Table 5-6 is constructed
from information in CSDL Report CSDL-R-2109 [15] and Military Handbook MIL-
HDBK-217E [16]. Table 5-6 specifiesthe factor by which the failure rates of the
componentsaremultiplied by (QualityFactor)andtheir respectivecostsaremultipliedby
(Cost Factor) when a different quality level is assumedfrom the Baseline System
Parameters.With theexceptionof theNo Repairsrepairstrategy,utilizing B quality level
parts showsitself to be the mosteconomical. If the repair policy is not to repair any
detectedfailureswithin theavionicssystemwhile thevehiclesitson thelaunchpad,using
Squalitylevelpartsminimizesthetotalcost.

QualityLevel

S

B

D

QualityFactor

0.25

1.0

10.0

CostFactor

10.0

1.0

0.50

Table 5-6. Component Quality Factors

Figure 5-9 shows the sensitivity of the total cost for each of the repair strategies of

each of the two architectures to the Payload Value. For each architecture, the sensitivity to

Payload Value appears to be dependent on how lax the launch requirement is. The repair

strategies which permit launch with more detected failures tend to be more sensitive to the

Payload Value. However, the repair strategies of Architecture 2 (the architecture based on

the AIPS FTP), excepting the No Repairs repair policy, are relatively insensitive to the

Payload Value over the region shown.

Figures 5-10 and 5-11 present the sensitivity of the total cost for each of the repair

strategies of each of the two architectures to the Time On Pad and Flight Time,

respectively. As shown in Figure 5-10, the optimum repair strategy for each architecture

appears to be least sensitive to the Time On Pad (Actuator or 2 Chains for Architecture 1; 2

Sensors or 2 Channels or 2 Actuators for Architecture 2). However, the first four repair

strategies of Architecture 2 all remain less than the optimal strategy for Architecture 1 even

when the Time On Pad is increased from the Baseline value of 7 days up to 30 days. As

shown in Figure 5-11, increasing the Flight Time from the Baseline value of 0.167 hours

amplifies the difference between the two architectures. All of the repair strategies of

Architecture 2 are less sensitive to this parameter than any of the strategies of Architecture

1. The least tolerant repair strategies of Architecture 2, First Detected Failure and 2

Sensors or 1 Channel or 2 Actuators, are least sensitive to the Flight Time.

5-27

6.09 5.59 129 142

5

4---3 '_.

q

2

E-

l-

o t
SBD SBD SBD SBD

<

SBD SBD

• _ .

SBD

eq_

._

,-.., (.q t"q

¢,q ¢,q t'_

SBD

.

!°e_
• O

-_z
<

Figure 5-8. Sensitivity to Component Quality

5-28

o
r_

ow,,l

c)

e_

¢)
b-

8

6

Arc_itec ure] ,,1

No Rep_ ___.

Arcl itecture 2

Firs Detected Failure,

Architecture 2
f

2 Sens or 1 Chan or 2 Acts] /

/Architecture 2

2 Sens or 2 Chart cr2Ac_

2

5

Architecture 2

No Repairs
hiteem e 1¢,,........A4

_hitectme 1

3

2 _

_:

0

Sens or 2 2han or 3 Acts
L A.

0.0 0.5 1.0 1.5 2.0

Payload Value (Billions of Dollars)

Figure 5-9. Sensitivity to Payload Value

Figure 5-12 displays the sensitivity of the total cost for each of the repair strategies

of each of the two architectures to the Repair Time. For the region shown, little sensitivity

to this parameter is observed. For each of the respective architectures, the strategies which

allow the vehicle to be launched with more detected failures tend to be the least sensitive to

Repair Time.

5.5. Conclusions and Suggestions for Future Work

A useful methodology has been demonstrated for investigating the impact of the

avionics suite to the recurring cost of the ALS. The methodology evaluates the cost of the

unreliability of the avionics suite and includes this along with a more traditional assessment

of its cost. This allows a truer appraisal of its recurring launch cost to be made. During

5-29

design and developmentof the avionics system,this methodology would allow the
designerto quantitativelypredictthe impactoncostthatdesigndecisionswill have. In this
way,whendesignfreedomexists,choicescanbemadewhichwill ultimatelyreducelaunch
costs. The methodologyalsomeasurestheimpacton costthat operationaldecisionscan
haveb suchasallowingthevehicleto launchwith detectedfailures.

Whentheavionicssystemis viewedfrom theperspectiveof being mission critical,

the cost of its unreliability can represent a significant portion of its total cost. Therefore,

the parameters which affect its unreliability also affect its recurring launch cost. For the

two architectures analyzed in this study, the impacts of two parameters are of particular

interest. The first is the repair strategy which is employed for failures detected while the

vehicle sits on the launch pad. Pre-empting launch on the occurrence of the first detected

failure within the avionics system is not economical. Allowing the vehicle to launch with

selected detected failures can potentially reduce the recurring launch costs. The second

parameter of interest is the quality level of the components used. The use of Class B parts,

as compared with Class S and D parts, minimizes the recurring launch cost for most of the

repair strategies analyzed.

Based on the analysis performed, the AIPS FTP architecture (Architecture 2) shows

itself to be potentially more economical than the more typical architecture employed for this

application (Architecture 1). The more viable repair strategies of the AIPS FTP architecture

show themselves to be much more cost effective than any of the strategies of Architecture 1

for the Baseline System Parameters. These repair strategies of the AIPS FTP architecture

also appear to be more insensitive to a number of the major system parameters. For the

AIPS FTP architecture, allowing the ALS to launch with detected failures in 1 Sensor

and/or 1 Channel and/or 1 Actuator (delaying repair until failures are detected in at least 2

Sensors or 2 Channels or 2 Actuators) appears to be the most economical repair strategy.

Though the methodology presented here shows itself to be very useful in

quantifying the impact of the reliability of the avionics system on the recurring launch cost

of the ALS, the actual analysis performed is of limited benefit. The models of the two

architectures which are the focus of the study are quite simplified in nature and lacked the

complexity of an actual avionics system. Therefore, in the future it would be most useful

to develop more detailed models that reflect the realistic architecture complexities and apply

the techniques illustrated here to these models. More specific conclusions regarding the

architecture and the most optimum repair policies could be made.

With regard to the methodology itself, some areas warrant further work. The costs

associated with interrupting the countdown and a failed mission could be modeled better.

The less tangible costs such as a delay in a launch schedule because of the need to do a

repair or because a vehicle is lost in flight needs to be investigated further. The analysis

5-30

could also be expandedto includeothercritical subsystems of the ALS along with the

avionics system. The methodology might also be enhanced to include reusable subsystems

within the ALS and possibly compare the costs of these architectures with their expendable

counterparts.

O

e-,
.o

O
E-

10

7

6

5

4

3

2

/Architecture 1

No Repairs ---.
|

Architecture 1 Architecture 2

............... J I J

'y/
Architecture 1 Ar :hitecture 2

Actuator or 2 Chain Fir: ;t Detected Failure |

t/¢ 2 Sens or 1 ;hartor 2 Acts.t/

/ 2 Sens o,r? chart or 2 Acts_

\ \I
3 Sens or 2 Chan or 3 ac_,_..-- I

0

0 10 20 30

Time On Pad (Days)

Figure 5-10. Sensitivity to Time On Pad

5-31

__+

I0

NoRe_ --- --...-x/
............ ,., • ,............

Amhite.ctam I / bl
First Detected Failure -,_ / /

8 +n + +J+_ + +

: /+
5 _-/]_q0Repairs X

/ \/i 2 Sens or I Chart ol 2 Acts \

+ '........ //........2?+.°r!_+...++...0?..2.:'cL',

3Sensor Cha o 3 cts

Architectare 2
_" _ X First Detected Failure

0

0 1 2 3

Flight Time (Hours)

Figure 5-11. Sensitivity to Flight Time

5-32

5

4

Architecture 1

No Repairs

o

t-

o

o
[-

3

)

1

0

0

Architec

First De1

urel

ected Failure

............. t

Architectu
Actuator

!

•e 1

,r 2 Chains L

Ar :hitecture 2

3 Sens or 2 Chan (

t

A_ lli_uu_ 2

No /,epairs

J
• j

Architecture 2

j First DetecteJ Failure
J)

zchitecture 2

Sens or 2 Chan

' Architecture :3

:han or 2 Acts

2 4 6 8 10

Repair Time (Days)

Figure 5-12. Sensitivity to Repair Time

5-33

5-34

6.0 SUMMARY AND CONCLUSIONS

The validated fault tolerant building blocks of the Advanced Information Processing

System (AliaS) have been configured to meet the reliability, availability, performance and

other avionics requirements of the Advanced Launch System (ALS) being developed jointly

by the National Aeronautics and Space Administration and the Department of Defense to

launch heavy payloads into low earth orbit. This report has described the AIPS for ALS

architecture synthesis process starting with the ALS mission requirements and ending with

an analysis of the candidatc ALS avionics architecture. The ALS architecture synthesis

process followed a new design for validation methodology that has been developed as part

of the AIPS program to assure that fault tolerant computer system architectures for

advanced applications meet the reliability, performance and other goals of the application.

The preliminary ALS avionics requirements were obtained by CSDL from the prime

contractors via Martin Marietta. The detailed computational requirements were developed

by Martin Marietta and jointly reffmed by MM and CSDL. The Reliability, Maintainability,

and Availability (RMA) requirements for the ALS were defined for the launch pad

operations, the launch or the boost phase, and for on-orbit operation. The ALS avionics

availability requirement was defined to be 95%, i.e., the ALS avionics must have a fault

masking capability with a probability of 0.95, at the end of one week on the launch pad.

The avionics reliability requirement was defined in terms of the maximum allowable

probability of mission failure or vehicle loss due to avionics failure. This failure

probability should not exceed 10 -5 for the mission duration which may vary from 10

minutes for short missions to as long as 48 hours for the longest ALS mission.

The computational requirements consisted of nine top-level functions: Central

Control and Processing, Winds Ahead Determination, Vehicle Power System Management,

Steering and Staging Control, Propulsion Control, Command and Telemetry Processing,

Range Safety and Destruct, and Programmable Payload Interface. Aggregate throughput

estimates were given for many of these functions. Each function was divided into

subfunctions which was supposed to be further defined at the atomically schedulable task

level. However, this process was carried out only for the Central Control and Processing

function during the course of this study.

Based on the data provided by MM, the overall ALS throughput requirements were

estimated to be approximately 8.8 MIPS for non-propulsion functions and 4.8 MIPS per

engine for propulsion functions. The inter-function communication bandwidth

requirements were estimated to be 26 Mbits/sec (prelaunch) between the non-propulsion

and the propulsion functions (17 engines), the non-propulsion I/O bandwidth requirement

was estimated to be 11.2 Mbits/sec, and the propulsion I/O bandwidth requirement was

estimated to be 1.587 Mbits/sec (17 engines).

6-1

_lt_N _rl0_lAtt_ _MII
PRECEDING PAGE bLA;;K i'_C;'I" /'_LML"• . _._

The flight system characteristics of the AIPS hardware and software building

blocks were defined based on a survey and projection of technology expected to be

available in the ALS time frame. The characteristics included the physical characteristics,

performance projections, hardware implementation, module failure rates, and a packaging

concept.

A quadruply redundant AIPS for ALS Fault Tolerant Processor will consist of eight

SEM-E modules -- two CPU modules, one Shared Devices module, one Communicator

and Interstage module, and Network Interface Sequencer modules, and two power

conversion modules. The SEM-E modules are 5.88 in. x 6.68 in. x 0.6 in. and weigh

approximately 1 lb. each. A quad FTP, including all enclosures, will weigh about 108 lbs,

occupy 2 cubic feet and consume about 165 Watts of power. A triplex FTP will weigh

about 81 lbs, occupy about 1.5 cubic feet, and consume about 124 Watts.

The raw throughput of the AIPS for ALS FTP, consisting of two 40 MHz RISC

microprocessors per channel, is projected to be 30 MIPS using the DAIS mix benchmark.

The useful FTP throughput available to the ALS applications tasks, after accounting for all

the fault tolerance and core hardware redundancy management overheads (but not the

sensor RM), is projected to be about 25 MIPS. The I/O and intercomputer network

bandwidths will be 100 Mbits/sec. The internal data exchange bandwidth of the FTP will

be about 64 Mbits/sec. The end-to-end communication time over the intercomputer

network between functions located on different FTPs is expected to be less than 2 msecs

per message. The average recovery time from a fault in the FTP is projected to be 10

msecs.

The raw hardware failure rates per hour, using Class B components, are projected

to be: 6.5x10 "5 per FTP channel and 1.0xl0 -5 per node on the launch pad; 3.3x10 -4 per

FTP channel and 1.1xl0 -4 per node during the boost phase; 2.3"10 -5 per FTP channel and

7.6* 10 -6 per node in orbit. These are the permanent failure rates. Transients are assumed

to occur at 10 times the permanent failure rates.

Using the building block performance and reliability projections, a preliminary

AIPS-based fault tolerant computer system architecture was configured to meet the ALS

avionics requirements. A single quadruply redundant AIPS Fault Tolerant Processor, the

core FTP, will perform all the non-propulsion functions required in the ALS. Additionally,

there will be a propulsion control FTP dedicated to each engine. The core FTP will access

the guidance, control, navigation and other sensors and actuators on one redundant I/O

network. Each of the engine control FTPs will access engine sensors and actuators on a

dedicated I/O network. The core FFP and all of the engine control FTPs will be connected

by a fault-masking triply redundant intercomputer network.

For short ALS missions, lasting an hour or less, it will not be necessary to

reconfigure the FTPs or the I/O and IC networks. Redundant hardware would provide

6-2

sufficient fault maskingcapabilityto meettheALS reliability requirement.However,for
longerALS missions, lasting 1 hour to 48 hours, it will be necessary to re-integrate FTP

channels affected by transient fault and to reconfigure the I/O and IC networks. The

performance projections show that these in-flight reconfigurations can be accomplished

without suspending any of the ALS applications tasks. The reconfigurability of the

networks is also intended to obviate expensive launch pad repairs.

Extensive analytical modeling of the AIPS for ALS architecture was carded out to

predict its reliability and availability. For the baseline architecture, consisting of one core

non-propulsion FTP and 17 propulsion control FTPs, all quadruply redundant, the launch

availability is expected to be 97.9%. This configuration will also meet the mission

reliability goals. Specifically, the mission probability of failure is expected to be 9.75"10 -6

This exceeds the goal of 10 -5 just slightly.

The contributions to the unavailability and unreliability come predominantly from

the propulsion avionics since 17 out of the 18 FTPs are for engine control. The availability

of the non-propulsion avionics, which consist of just 1 FTP, is 99.88%. Similarly, the

mission loss probability, attributable to non-propulsion avionics, is 5.42"10 -7 . Evidently,

one needs to reexamine the requirement of dedicating a controller to each engine. If, for

example, an FTP was configured to control 4 engines, which it is capable of doing based

on the performance projections, only 4 FTPs will be necessary to control 16 engines. This

would reduce the probability of mission failure due to a failure of propulsion avionics to

2.16* 10 "6. The launch availability would improve to 99.52%.

The ALS vehicle and engine designers should seriously examine the option of

integrating engine controllers outside the engine and with the core avionics. This would

not only improve the overall ALS reliability and availability, as demonstrated above, but

would also result in reduced weight, volume, power and cost.

The AIPS for ALS architecture defined here is preliminary in nature but shows that

the ALS performance and reliability requirements can be met by the AIPS hardware and

software building blocks that are built using the state-of-the-art technology available in the

1992-93 time flame. The level of detail in the architecture definition reflects the level of

detail available in the ALS requirements. As the avionics requirements are refined, the

architecture can also be refined as well as defined in greater detail with the help of analysis

and simulation tools. For example, the functions in the core FTP need to be allocated to the

computational processor and the I/O processor. This requires a more detailed enumeration

of interfunction communication requirements and I/O communication requirements. Also,

no effort was expended on defining the detailed I/O architecture. This requires as inputs

the sensor details such as the number and type of sensors, their failure rates, and so on.

This information can be used to define redundancy levels of sensors and allocate sensors to

different redundant layers of the I/O network.

6-3

The data presented by Martin Marietta served as an important starting point for

determining the requirements of the ALS avionics. During the course of the CSDL-Martin

Marietta interaction an active dialogue was set up which would have in time resulted in a

more complete definition of a common requirements vocabulary and facilitated the

acquisition of comprehensive requirements data.

Several variations on the baseline architecture presented here are also possible and

should be modeled and analyzed. These include allocating several engines to one

propulsion control FTP, investigating the effects of launch with failures, and using

authentication for the I/O and IC networks.

To complete the design of a validated ALS avionics architecture, the architecture

synthesis process begun in this study needs to be followed up by the steps outlined in the

design for validation methodology. Once an architectural configuration has been selected

that satisfies the reliability, performance and other ALS avionics requirements, the next step

is the detailed hardware and software design. The detailed design phase will utilize the

AIPS building block design knowledgebase. Once the building blocks have been

fabricated using the state-of-the-art microelectronics and the system services implemented

using the latest Ada Run Time System and compiler, the validation of the integrated

avionics system can commence. This validation pertains to the specific hardware and

software implementation and not the architecture or the building block characteristics since

these have been prevalidated. A test and evaluation of the avionics integrated with

applications and actual or simulated I/O should confirm the predicted performability

characteristics. Any discrepancies between the predicted and the actual performability

should be minor and traceable to the detailed implementation phase rather than the

architectural or building block design. These can be corrected by refining the

implementation.

Since a prime design driver for ALS is the cost, a study was also undertaken to

analyze the impact of the avionics architecture on the launch cost of ALS. A methodology

was developed to quantify the contribution to the recurring launch costs due to the

reliability and availability characteristics of the avionics. The resulting cost model was then

used to predict and compare the costs of two different architectures for the ALS avionics.

The two architectures modeled were defined as simplified versions of two potential

candidates for the ALS avionics. Architecture 1 represents an elementary method of

incorporating fault tolerance into the avionics system. Architecture 2 is a simplified version

of the AIPS for ALS architecture defined in the current study.

A useful methodology has been demonstrated for investigating the impact of the

avionics suite to the recurring cost of the ALS. The methodology evaluates the cost of the

unreliability of the avionics suite and includes this along with a more traditional assessment

of its cost. This allows a truer appraisal of its recurring launch cost to be made. During

design and development of the avionics system, this methodology would allow the

designer to quantitatively predict the impact on cost that design decisions will have. The

6-4

methodologyalsomeasurestheimpactoncostthatoperationaldecisionscanhave-- such
asallowing thevehicleto launchwithdetectedfailures.

Whentheavionicssystemis viewedfrom theperspectiveof being mission critical,

the cost of its unreliability can represent a significant portion of its total cost. Therefore,

the parameters which affect its unreliability also affect its recurring launch cost. For the

two architectures analyzed in this study, the impacts of two parameters are of particular

interest. The first is the repair strategy which is employed for failures detected while the

vehicle sits on the launch pad. Pre-empting launch on the occurrence of the first detected

failure within the avionics system is not economical. Allowing the vehicle to launch with

selected detected failures can potentially reduce the recurring launch costs. The second

parameter of interest is the quality level of the components used. The use of Class B parts,

combined with a fault tolerant architecture, as compared with Class S and D parts,

minimizes the recurring launch cost for most of the repair strategies analyzed. It should be

noted here that the current philosophy for launch system avionics is to use the highest

quality, that is, Class S, components in a single string, non-fault tolerant architecture.

Based on the analysis performed, the AIPS FTP architecture (Architecture 2) shows

itself to be potentially more economical than the more typical architecture employed for this

application (Architecture 1). The more viable repair strategies of the AIPS FTP architecture

show themselves to be much more cost effective than any of the strategies of Architecture 1

for the Baseline System Parameters. These repair strategies of the AIPS FTP architecture

also appear to be more insensitive to a number of the major system parameters. For the

AIPS FTP architecture, allowing the ALS to launch with detected failures in 1 Sensor

and/or 1 Channel and/or 1 Actuator (delaying repair until failures are detected in at least 2

Sensors or 2 Channels or 2 Actuators) appears to be the most economical repair strategy.

Though the methodology presented here shows itself to be very useful in

quantifying the impact of the reliability of the avionics system on the recurring launch cost

of the ALS, the actual analysis performed is of limited benefit. The models of the two

architectures which are the focus of the study were quite simplified and lacked the

complexity of an actual avionics system. Higher fidelity models that reflect the details of

the architecture need to be developed.

With regard to the methodology itself, the costs associated with interrupting the

countdown and a failed mission could be modeled better. The less tangible costs such as a

delay in a launch schedule because of the need to do a repair or because a vehicle is lost in

flight needs to be investigated further. The analysis could also be expanded to include

other critical subsystems of the ALS along with the avionics system. The methodology

might also be enhanced to include reusable subsystems within the ALS and possibly

compare the costs of these architectures with their expendable counterparts.

6-5

6-6

7.0 REFERENCES

1. R. Harper, L. Alger, and J. Lala, "Advanced Information Processing System: Design

and Validation Knowledgebase", NASA Contractor Report 187544, September, 1991.

2. R. Cole, "Advanced Information Processing System for Advanced Launch System:

Hardware Technology Survey and Projections", NASA Contractor Report 187555,

September, 1991.

3. Hypercard Stack "XPROCESSING," Martin Marietta Astronautics Group, Denver,

CO 7 December 1989.

4. Hypercard Stack "ZARCS," Martin Marietta Astronautics Group, Denver, CO 7

December 1989.

5. S. Johnson, "IRAD ALS Requirements Summary," Martin Marietta Astronautics

Group, Denver, CO, 8 November 1989.

6. "Future Launch Vehicle (ALS_PLUS) Requirements," Martin Marietta Astronautics

Group, 29 October 1989.

7. J.H. Lala and S.J. Adams,"Inter-Computer Communication Architecture for a Mixed

Redundancy Distributed System", Journal of Guidance, Control, and Dynamics, Vol.

12, No. 4, July-August 1989.

8. L. Alger, and J. Lala, "Performance Evaluation of a Realtime Fault Tolerant

Distributed System", 23rd Hawaii International Conference of System Sciences,

Kailua-Kona, Hawaii, January, 1990.

9. L. Burkhardt, L. Alger, R. Whittredge, and P. Stasiowski, "Advanced Information

Processing System: Local System Services", NASA Contractor Report 181767, April,

1989.

10. T. Masotto and L. Alger, "Advanced Information Processing System: Input/Output

System Services", NASA Contractor Report 181874, August, 1989.

11. G. Nagle, L. Alger and A. Kemp, "Advanced Information Processing System:

Input/Output Network Management Software", NASA Contractor Report 181678,

May, 1988.

12. L. Burkhardt, T. Masotto J. Terry Sims, R. Whittredge and L. Alger, "Advanced

Information Processing System: Inter-Computer Communication Services", NASA

Contractor Report 187556, September, 1991.

13. S. J. Adams, M. Dzwonczyk, "Techniques for Transient Error Recovery and

Avoidance in Redundant Processing Systems", NATO/AGARD 49th Symposium on

Fault Tolerant Design Concepts for Highly Integrated Flight Critical Systems,

Toulouse, France, October 10-13, 1989.

14. S. J. Adams, "Hardware assisted Recovery from Transient Errors in Redundant

Processing Systems," 18th International Symposium on Fault Tolerant Computing,

Chicago, IL, June 1989.

7-1

PRECEDING PAGE BLANK NOT FILMED

15. Babcock, IV, P. S. and K. C. Hell, A Cost/Reliability Model of Electronic Functions,

CSDL-R-2109, The Charles Stark Draper Laboratory, Inc., Cambridge,

Massachusetts, October 1988.

16. Military Handbook. Reliability Prediction of Electronic Equipment, MIL-HDBK-

217E, Department of Defense, Washington, D. C., October 27, 1986.

17. H. Kando, T. Iwazumi and H. Ukai, "Singular Perturbation Modelling of Large Scale

Systems with Multi-Time-Scale Property, " Int. J. Control, vol 48, No. 6, 1988.

18. K. Trivedi and R. Geist, "Decomposition in Reliability Analysis of Fault-Tolerant

Systems," IEEE Trans. on Reliability, vol. R-32, No. 5, December 1983.

19. J. McGough, K. Smotherman and K. Trivedi, "The Conservativeness of Reliability

Estimates Based on Instantaneous Coverage," IEEE Trans. on Computers, vol. C-34,

No. 7, July 1985.

20. A. Bobbio and K. Trivedi, "An Aggregation Technique for the Transient Analysis of

Stiff Markov Chains," IEEE Trans. on Computers, vol. C-35, No. 9, September

1986.

21. L. Segal and M. Slemrod, "The Quasi-Steady State Assumption: A Case Study in

Perturbation, " SIAM Review, vol. 31, No. 3, September 1989.

22. J.T. Sims, "Performance Benchmarks for the VLSI - Fault Tolerant Processor," C.S.

Draper Laboratory Internal Memorandum, February 1988.

23. Dale A. Mackall and S.D. Ishmael, "Qualifications of the Flight Critical AFTIW-16

Digital Flight Control System," The 21st Aerospace Sciences Meeting, AIAA-83-

0063, Reno, Nevada, January 1983.

24. Dale A. Mackall, "AFTIW-16 Digital Flight Control System Experience," First Annual

NASA Aircraft Controls Workshop, NASA Langley Research Center, Hampton,

Virginia, October 1983.

7-2

mini

Z
r_

E_

m_

c_

E_

K%4

.

_ 6

&.

i m

"_ + 0,,,Ooi
o o._I

O-00I

0 C

E®_I i

_o __ _-__ _ == ,.:._8_ _" >>0., _-

0 ...

,,i

0
0

¢-..o ooo_o .
" hO 0 0 C'9 U_ 0 . _

c4 6_6_J 06 ,-
0

,^ "_ ID ill _..

e £-_..___o° _ _o?:

E
0

e

0

m
0

® o
:.. o

°

u o

:- Q

Q) co

Z_

[._.

,0

m

b.

*- 0

<

.._ 0
--- 0

°
QP

<

i
E

-- !o

0 o
0

0
0

i

=.

o

0 "
0

o ,

o Q. ol

< u_

uJ l._J_.Ioc0 o ¸

tJJ

o

• _oooo
+ ÷

COCO0000
m _ _ O 0 0 0 0

_u
O

,,., m

0 0 0 0 0
,_. + + + + +

"" 00000"w 0 0 0 0 0

x _

-- 0 0
_Om_O0

:>_66666
000

Q .,! _ 0 O

I-- m
U.

o o o o o

UJ IJJ w LLJ IjJ

e

:o

<

O_

CO

t-

O

t-

O
(o

e.-
.--

Q

s-
b-

e-,
t-

o

erj
0
c_

D,, t_

e_

_ 00 CD

°o___ °i
. o

•_ _ .- _ _ _

-_i _ _ i _
= _._o
_. _ _ _ _ _ 2

J_=_-'_
_ _.-_ < <.-

_o _

o
•-- o

o

_ o o o o

_ www
{,,,,) ":_" "_" r,,,..I

!

°

._ . § ,2 __1
®_l

_ "" ol•_ _= _-_1W ,

Q

I

• 00000

-_++++_'o WWWW

I_O0000

.o 66666
0

0

o o o o o
+ + +

_0__ooooOOoooo
mo o_o_o_66

0_

®°_°o o
:>_66666
_00

... ooooo
+ + + + +

= ,o__

_ ,., --
_'-___- _ _oo

i"
o

i

.<

Q

u

° i

°i

CO

O0

_0 _o

co o3

, --_ _

u._ u.

O
O

m
m

c

m

O
!--

<

°i

8

_ U'_ r.

(D O ,_1

e'-

8

O

cA

_o
•"1 .-J

u .w ._

LM _

m
r.

e_

-_ _ ®

e- e- e--

0 0 0

o) co

E.o _o_ o

14. ¢_ _i t

,_ _ ,_'-

0

°!

• ._ _

•"_'_,'5 "_ e

OC

APPENDIX B

MODEL REDUCTION TECHNIQUE FOR FTP ANALYSIS

B. I Introduction

There is an increasing demand for fault-tolerant control systems in high

performance, critical applications. At the core of such systems, there is one or more fault

tolerant processors (FTP's). The FTP receives information from sensors, sends

commands to actuators and performs redundancy management. Given its critical role in

any control system, the operation and performance of the FTP must be very carefully

modeled if the safety and performance evaluation process is to be relied upon.

An FTP may contain computing elements, dedicated and/or shared memories,

information replicating components, I/O-dedicated electronics, etc. The key feature of an

FTP is the ability to handle faults in a controlled, timely manner that enables correct

reconfiguration and uninterrupted (on the time scale of interest) operation. An accurate

model must be able to describe in detail rate processes such as component failures, fault

detection, fault isolation and reconfiguration.

The Markov modeling method has clearly emerged as the preferred approach with

regard to the analysis of such processing systems. The ability of this approach to correctly

capture rate processes and event sequence dependencies are of crucial importance. While

discrete simulation approaches might be perfectly adequate from the point of view of

modeling flexibility, computational efficiency strongly tilts the balance towards the

Markovian approach. This is so because, for such highly reliable systems, the component

failure rates are very low. Consequently, the fault occurrence event rate is so low as to

require a prohibitively large number of trials in order to accumulate statistically meaningful

and reasonably accurate results.

The Markov method however suffers from a major drawback. The number of

states proliferate rapidly, often leading to an intractably large model. The FTP proper

represents a system of moderate size, such that even a rather detailed model does not

generally pose a major problem. However, when attempting to analyze the entire control

system which the FTP is part of, maintaining the level of detail desirable for the FTP alone

would most likely give rise to an unwieldy, perhaps even intractable model. Techniques

such as aggregation, truncation and decomposition are used to mitigate this basic difficulty.

Still, it would be highly desirable to devise a simplified model of the FTP which would

greatly contribute to alleviating the space explosion problem while correctly preserving the

main features of the detailed model.

The purpose of this appendix is to describe the development of such an approximate

model. First a detailed Markov model of a triply redundant FTP is introduced. The model

reduction technique is then presented, leading to an excellent approximate model for this

B-1

FTP. A completeanalyticalsolutionof thereducedmodel follows. To get a feel for the

approximations involved, the procedure is shown applied to a simple example, for which

analytical solutions are feasible for both the exact and reduced models. The appendix ends

with a few concluding remarks regarding the reduction technique to be presented.

B.2 Detailed Triplex FTP Markov Model

A detailed Markov model for a Quad FTP is described in Section 4 of [1]. The

model tracks separately, within a computational channel, the processor element, the

associated dedicated memory and the corresponding interstage. Both permanent and

transient failures are accounted for, along with the appropriate reconfiguration mechanism.

Provisions are made for including common mode failures as well. This model provides a

realistic paradigm of the fault occurrence/fault handling processes.

The cost analysis presented in Section 5 is focused on a comparison of two triplex

architectures, one of which is based on an AIPS triplex FTP. The approach used in

constructing the quad model was used to generate a similar triplex Markov model. In order

to simplify the description of the model reduction method, some additional assumptions

were made:

the processor and its associated memory in one channel were treated as one

component,

- the triplex coverage was assumed perfect and

- common mode failure was disregarded.

The Markov model for the triplex FTP, based on these assumptions, is shown in

Figure B-1. The notation used for the state transition rates is the following:

kant, (,sl) is the failure rate for component a (where a = p for the processor and a = i

for the interstage) from configuration n (where n = t, d or s, i.e., triplex, dual or

single, respectively); b indicates the type of failure, (with b = t or p denoting

transient or permanent failure); sl stands for system loss.

panb is the rate of the reconfiguration process initiated by a b-type failure of

component a starting from configuration n; here a, b and n have the same meaning

as above.

State 1 represents operation with no failures. States 6 and 11 correspond to

degraded modes of operation, namely operation with one channel failed and two channels

failed, respectively. Finally state 12 denotes an aggregated system loss condition. This

state is reached either as a result of incorrect reconfiguration or because of exhaustion.

B-2

B-3

The group comprising states 2,3,4 and 5 is associated with the state of the system

after one failure and the group including states 7,8,9 and 10 corresponds to the system after

two failures. The states in these two groups are characterized by extremely short holding

times, when compared to states 1, 6, 11 or 12. Specifically, the "fast" states represent

intermediate configurations, persisting for only very short periods of time during the

reconfiguration processes. The reader should note that both permanent and transient

failures are accounted for, with a distinct reconfiguration path. Specifically, transient

failures, i.e., states 2, 5, 7 and 10, are reconfigured back to their respective origin states,

i.e., states 1 and 6. In contrast, permanent failures, i.e., states 3, 4, 8 and 9, lead to

reconfigurations to the appropriate degraded operational modes, states 6 and 11.

This Markov model captures the key fault occurrence and handling processes in a

triplex FTP, designed to withstand Byzantine faults. The actual model used in the cost

analysis contains additional details, which makes it a realistic tool for studying the

performance of an FTP processor.

It is perfectly feasible to use this model to analyze the FTP on a stand alone basis.

Still, care must be taken in the solution technique to overcome difficulties caused by the

very pronounced stiffness of the resulting system of ordinary differential equations.

Indeed, there is an enormous discrepancy between the time constants characterizing the

failure events and those associated with reconfiguration processes.

When the FTP must be analyzed as a subsystem within a much larger control

system, the high level of detail in the model becomes a liability. This is so both because of

the large state space the analyst will have to deal with and in view of the stiffness aspect

mentioned above. It is thus natural to search for an approximation technique allowing a

high level of fidelity, while providing a much more tractable model to work with. Such a

technique will be described in the next section.

B.3 FTP Model Reduction

As already mentioned, the detailed Markov model has a number of states

characterized by a very short time constant relative to the time scale of the failure events.

This situation immediately suggests the possibility of a behavioral decomposition. The

existence of distinct time scales is often encountered in control system applications and is

exploited to generate a reduced model of the original system. Reference 17 presents a good

review of this approach in the system control area. The same basic idea is also often used

in simplifying various physical models (see, for example, [17]). These reduction

techniques often rely on detailed eigenvalue analysis and consequently are rather

cumbersome. The reduction techniques become considerably more appealing when it is

obvious which states are characterized by fast time constants and which ones are "slow".

B-4

In the reliability analysis field, the need to model both the fault occurrence (slow)

and the fault handling (fast) processes leads naturally to the situation previously described.

There is a strong incentive to perform a systematic behavioral (or temporal) decomposition

in order to both reduce the size of the state space and also remove the severe stiffness of the

mathematical model. References [18] and [19] propose a decomposition approach. While

the approach is well founded, it is quite impractical for complex applications because of

some rather cumbersome probabilistic arguments used to determine aggregated transition

rates. In [20] Bobbio suggests another approach, similar to that used in [21], which leads

to a systematic and straightforward reduction model reduction procedure. The technique

does not use a formal eigenvalue analysis, relying solely on an examination of the original,

detailed model structure and transition rates. This technique will be applied to obtain a

reduced FTP model.

The state transition rates may clearly be divided into two separate sets, one

consisting of the slow rates, i.e., the failure rates, the other consisting of the fast rates, i.e.,

the reconfiguration rates. We can then partition the n states of the model into two disjoint

and exhaustive subsets defined as follows:

[S] is the set of ns slow states (1, 6, 11 and 12), i.e., states with no outgoing

transitions classified as fast,

[F] is the set of nFfast states, i.e., states with at least one fast outgoing transition.

For convenience, we further subdivide the set IF] into the subsets [F1] and [F2],

corresponding to the fast states reached following a single failure (2, 3, 4 and 5) and two

failures (7, 8, 9 and 10), respectively. The transition matrix and the associated probability

vector are then reordered such that the equations governing the states in [S] become the first

ns equations, followed by the nF1 equ: _)ns corresponding to the states in [F1] and the nF2

equations corresponding to the states m [F2], with nF = nFl + nF2.

After this reordering, the equations describing the Markov model can be written as:

PsPF1

PF2
[DoBolBo2j[Ps]= Blo D1 O PF1

B20 O D2 PF2

(B-l)

where:

DO =

-M 0 0 0

0 -_.6 0 0

0 0 -M1 0

0 0 +_.11 0

D1 = diag(-_,-53,-54, -55)

D2 = diag(-57, -5s, -_9, -510)

O = null matrix

B-5

Bol =

P21 P31 p4_ Ps]

P26 p36 p46 P56

0 0 0 0

L2 M _ L5

Bo2 =

0 0 0 0

p76 p86 p96 910,6

pTA1 P8,11 99,11 plO,ll

_.7 k8 _9 _qo

BlO =

_.12 0 0 0

k13 0 0 0

kl4 0 0 0

k15 0 0 0

B2o =

0 Z.67 0 0

0 7_68 0 0

0 _,.69 0 0

0 _.6,10 0 0

For facility, the notation follows the convention indicated in Figure B-2. The total

outgoing transition rate from the fast state "k" is denoted 5k and is given by:

5k = Pld+ Pkj+ _k

while thetotaloutgoing transitionratefrom slow statc"i"isdenoted _.iand isgivcn by:

_'i = Z _-ik

where the summation is implied over all the fast states "fed" by slow state 'T'.

fast state

_'ik _'k

slow state slow state

system loss

Figure B-2 Notation Convention

B-6

At this point, the key approximation is made that the fast states reach their steady

state well within the time scale of interest, i.e., mission time. In other words, the fast

states are assumed to respond instantaneously to changes in the slow states. Setting the

temporal derivatives of the fast states' probabilities to zero leads to the following

approximate expressions for the probability subvectors PF1 and PF2:

PF1 = -DllBloPs and PF2 = -D21B20Ps (B-2)

These expressions for PF1 and PF2 are used to eliminate them in favor of PS in the

first ns equations, leading to the following reduced system of equations for PS:

Ps =[Do-B01D'IIBIo -B02D_IB20] PS = AS PS (B-3)

It should be noted that the algebraic manipulations implied in (B-2) and (B-3) are

particularly easy to carry out in our application because of the specific structure of the

Markov model. Indeed, the submatrices DI and D2 are strictly diagonal, making their

inversion trivial. The significance of their strictly diagonal structure is that no direct

coupling exists among the fast states. Moreover, B10 and B20 are very sparse, further

reducing the computational effort required to obtain the approximate model equations.

The transition matrix of the reduced model has the following structure:

A s =

o

all 0 0 0

a21 a22 0 0

0 a32 a33 0

a41 a42 a43 0

(B-4)

where:

5 X6k(Pk,11+Xk),all =- Z _'l---k (Pk6 + _,k), a_2 = "k=k=2 _k _k

(B-5a)

5 10

all= Z kl__& Pk6, a;2: Z X6.__kPk, ll,
k=2 _k k=7 5k

(B-5b)

5 10

a,_l= _ _.l.__k_'k, a_2 = Z kk___.i_'k,

k=2 _k k=7 _k

(B-5c)

a33 = - _,11, a43 = _,11- (B-Sd)

B-7

The reduced formulation is thus fully defined in terms of the originalmodel

parameters. A more insightfuland convenient,but stillfullyequivalentformulation,that

clearlyidentifiesthe successfulas well as the failedreconfigurations,can bc obtained by

rewriting the reduced model transition matrix in the following form:

A s =

all 0 0 0

-cta_ 1 a22 0 0

S

0 -c':ta_2 a33 0

-(1-ct)a_ 1 -(1-cd)a_2 -a33 0

(B-6)

Here, the equivalent triplex and duplex coverages are obtained by simply comparing

formulations (B-4) and (B-6):

_2 I_7 _6k Pk,11
5 _,1._...KkOk6

ct = k= 5k and cd = k= "_k (B-7)

_2 _,lk (Pk6 + _,k) _ _L6k (Pk.ll + _.k)
k= -_'-k k=7 --_-k

A few remarks are in order at this point. Since it was assumed that the triplex

coverage (i.e., the detection and the isolation) is perfect, a system loss can be caused only

by a coincident failure. Since the reconfiguration rate is many orders of magnitude greater

than the failure rate, the equivalent triplex coverage is very nearly 1.0. In contrast, the

situation for the dual operation, reached after a successful recovery following a single

failure, is quite different. Here, the detection is still assumed perfect, but for isolation we

must rely on self-test, which is assigned a probability of success Cd,isol < 1.0.

Consequently, a transition to system loss may take place not only because of a coincident

failure but also predominantly because of improper reconfiguration. As a result, the

equivalent duplex coverage may be significantly less than 1.0.

A simple example will further clarify this important aspect. Disregarding transient

failures and treating the processor/interstage set as one "component" with a failure rate _.

and a reconfiguration rate p, we have, from (B-7):

___3_h__ p

ct = p + 2_. = _ (B-8)

3X (p+2_.) l+2---hX
p+2_. P

B-8

2_. Cd,isolP

Cd= Cd,isolP + (l-Cd, isol)P + X = Cd'is°-'----!l (B-9)

2_, [Cd,isolp + (1-Cd,isol)P + _-] 1 + _-

Cd,isolP+ (l-Cd,isol)P+ _. P

Since _. <<p, then c t -- 1.0 and cd = Cd,isol. The expressions (B-7) properly reduce

to the simple model often used to represent a triplex FTP.

The reduced model obtained in this section is illustrated in Figure B-3. The three

operating states (1, 2 and 3) in the reduced model correspond on a one-to-one basis to the

operating states (1, 6 and 11) in the original model. The transition rates used in this model

are given by the expressions (B-5) and and (B-7). From the initial n-state model (n = 12),

an approximate model containing only ns states (ns = 4) has been obtained. Extensive

numerical experimentation, comparing the original model with the reduced one, has

consistently indicated an excellent agreement, proving the validity of this temporal

decomposition technique in our application.

The simplicity of the reduced model allows a fully analytical solution, which will be

introduced in the next section.

B-9

no failures one failure two failures

O _tct _d
/," "X

system loss

Figure B.3 Reduced Markov Model of a Triplex FTP

B.4 Analytical Solution of the Reduced FTP Model

The simple, non-cyclic structure of the reduced model allows a compact, analytical

solution. The reduced model is basically a chain, with additional transitions to system loss

before component exhaustion. It can be easily shown that the solution to the model

depicted in Figure B-3 is:

PI = e-_'tt (B- 10a)

o_ tt]
kt_k d

(B-lOb)

P3= (_'tct)(_'dcd)[(_'d-_'S)e-ktt-(_'t'_'S)e'_'dt+{_'t-xd)e'_'st](B-IOc)

The probabilities correspond to the three operational modes postulated for the

triplex FTP, i.e., operation with no failures, with one failure and with two failures,

respectively. For the particular case when _.t = 3_., _d = 2_. and _s = _., these formulas

B-10

takeon anespeciallysimple, compact form, i.e., a binomial formula modified to account

for imperfect coverage,

P1 =R_ (B-11a)

P2 = 3 ct P_(1- Ro) (B-11b)

P3 = 3 ctcd Ro(1 "R0) 2 (B-1 lc)

where R0 = exp(-_t). In these formulas, the appearance of the coverage

probabilities account for the obvious need for successful reconfiguration if the FTP is to

continue to operate in a degraded mode.

This analytical formulation is a powerful tool for carrying out extensive parametric

studies. The formulation can be easily adapted to a different type of FTP, for example a

quad configuration.

B.5 Exact and Reduced Models for a Simple Example

It is instructive to examine a simple example to reveal the exact nature of the

approximations involved in carrying out the model order reduction procedure outlined up to

this point. A simple example will further clarify this important aspect. Let us consider a

dual FTP, treating a processor/interstage set as one component, subject to both transient

and permanent failures occurring at the rates kt and _.p, respectively. The same

reconfiguration rate, p, is assumed for both transient and permanent failures. The self-test

coverage, accounting for the imperfect isolation characteristic of the dual architecture, is

denoted by c. In view of the much greater rate of the reconfiguration process compared to

the rate of failure events, the effect of a coincident failure will be disregarded. The Markov

model incorporating all these assumptions is illustrated in Figure B-4. This model can be

solved analytically to yield the following expression for the probability of system loss:

pexactSL = 1 - A e-Sit - Be-S2t - C e -_.t (B-12)

where the coefficients and the exponents are given by:

A - _" [$2- 213 (1-C)]

(S1-S2)(S1 " _-)'

B= -t[sl'2p(l'c)] C= 2cXpp

sl and $2 are the roots of: s2 + (2_. + p) s + 2p [Lp + (1-c)_.t] = 0

and _. is the total failure rate, i.e., _. = kt + _.p.

B-11

Applying the procedurepreviously outlined, the initial model is reducedto the
approximatemodelshownin FigureB-5. Theprobabilityof systemlossfor this modelis
givenby:

papprox _e-2[Lp+ (1-c)_.,]t _2e-_.tSL = 1- - (B-13)
where

= 1- 2¢

1_2c ,_t

It can be easily shown that if _. _ p, then the roots of the quadratic are well

approximated by:

s2 = 217Lp + (1-c)_,t] and s, = P (B-14)

Substituting (B-14) into the expression of the coefficients in (B-12) leads to the

conclusion that •

A-)0, B---_g and C---)C,

as (L/p)"-';'0

In addition, it is clear that the first exponential will decay very rapidly compared to

the other two. Consequently, for any length of time sufficiently in excess of the time scale

of the reconfiguration process (i.e., l/p), the approximate solution, (B-12), is in excellent

agreement with the exact solution, (B- 13).

B-12

no failures
(duplexoperation)

successful recovery
after one permanent failure

(simplex operation)

system loss caused by
incorrect reconfiguration

or exhaustion

(l-c) p

Figure B-4 Markov Model of a Dual FTP

no failures one failure

O 2C_p _ (

system loss

Figure B-5 Reduced Markov Model of a Dual FTP

B-13

It is interestingto note theexpressionof the equivalent dual coverage for this

example. From Figure B-5 and according to equations (B-7), this effective coverage is

given by:

C_
2c_ =

2(1-c)_. + 2cLp 1 + (l-c) _.t (B-15)

7_p

The effective coverage is equal to the self-test coverage when the transient failures

are disregarded. It decreases monotonically as the ratio of transient - to - permanent

failures increases. This result is quite general, in spite of the simple model used to illustrate

it.

B. 6 Conclusions

A methodology enabling a systematic reduction of a complex FTP model has been

developed. The technique relies solely on an examination of the structure of the transition

matrix, with no eigenvalue analysis and coordinate transformation necessary. The reduced

model captures all the relevant features of the detailed model and represents an excellent

approximation. The simplicity of the reduced model allows a fully analytical solution,

which is extremely effective especially when extensive trade studies are required.

The technique is illustrated on a simple but instructive example, for which an

analytical solution is possible for both the exact and the reduced models. The high quality

of the approximation is clearly shown. In addition, the crucial impact of the transient

failures on the success of the reconfiguration process is demonstrated.

The methodology and the results presented herein provide considerable insight

regarding the difficulties and the subtleties involved in the rigorous reliability and

performance analysis of an FTP.

B-14

Report Documentation Page

1. Report No.

NASA CR-187554

2. Government Accession No.

4. Title and Subtitle

Advanced Information Processing System for Advanced

Launch System: Avionics Architecture Synthesis

7, Author(s)

Jaynarayan H. Lala, Richard E.

Jaskowiak, Gene Rosch, Linda S.

Harper, Kenneth R.

Alger, Andrei L. Schor

9. Performing Organization Name and Address

The Charles Stark Draper Laboratory,

Cambridge, MA 02139

Inc.

12 Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

3. Recipient's Catalog No.

5, Report Date

September 1991

6, Performing Organization Code

8, Performing Organization Report No.

10,

11.

13,

Work Unit No,

506-46-21-56

Contract or Grant No.

NASI-18565

Type of Report and Period Covered

Contractor Report

14 Sponsoring Agency Code

15. Supplementaw Notes

Final Report

Technical Monitor: Felix L. Pitts

16. Abstracl

The Advanced Information Processing System (AIPS) is a fault-tolerant distributed
computer system architecture which has been developed to meet the real time
computational needs of advanced aerospace vehicles. One such vehicle is the
Advanced Launch System (ALS) being developed jointly by the National Aeronautics
and Space Administration and the Department of Defense to launch heavy payloads
into low earth orbit at one tenth the cost (per pound of payload) of the current launch
vehicles. An avionics architecture that utilizes the AIPS hardware and software

building blocks has been synthesized for ALS. This report describes the AIPS for ALS
architecture synthesis process starting with the ALS mission requirements and ending
with an analysis of the candidate ALS avionics architecture.

17. Key Words (Suggested by Author(s))

Advanced Launch System
Fault-Tolerant Avionics Architecture
Reliability
Redundant Digital Computers
Distributed Processors

18. Distribution Statement

Unclassified-Unlimited

Subject Category 62

19 Secur_W Cta_ff (of th,s repont

Unclassified

NASA FORM 1626 OCT 86

i

20 SecuriW Cla_i1 Iof th,s page)

Unclassified

21 No of pages

158

22. Prtce

